

Institute for Interlaboratory Studies

Results of Proficiency Test Refinery Gas February 2022





# CONTENTS

| 1   |                                                      | 3  |
|-----|------------------------------------------------------|----|
| 2   | SET UP                                               | 3  |
| 2.1 | QUALITY SYSTEM                                       | 3  |
| 2.2 | PROTOCOL                                             | 3  |
| 2.3 | CONFIDENTIALITY STATEMENT                            | 4  |
| 2.4 | SAMPLES                                              | 4  |
| 2.5 | STABILITY OF THE SAMPLES                             | 5  |
| 2.6 | ANALYZES                                             | 5  |
| 3   | RESULTS                                              | 5  |
| 3.1 | STATISTICS                                           | 6  |
| 3.2 | GRAPHICS                                             | 6  |
| 3.3 | Z-SCORES                                             | 7  |
| 4   | EVALUATION                                           | 8  |
| 4.1 | EVALUATION PER COMPONENT OR PER PARAMETER            | 8  |
| 4.2 | PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES | 11 |
| 4.3 | OVERVIEW OF THE PROFICIENCY TEST OF FEBRUARY 2022    | 12 |
| 5   | DISCUSSION                                           | 13 |

# Appendices:

| Data, statistical and graphic results | 14                                                                                                                                         |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Other reported test results           | 35                                                                                                                                         |
| Number of participants per country    | 36                                                                                                                                         |
| Abbreviations and literature          | 37                                                                                                                                         |
|                                       | Data, statistical and graphic results<br>Other reported test results<br>Number of participants per country<br>Abbreviations and literature |

## **1** INTRODUCTION

During the last years several participants requested iis to set up a proficiency test (PT) for Refinery Gas Analysis. In 2021 iis started an investigation for the feasibility of such a PT. Because iis has limited gas-handling facilities in place to prepare gas samples, EffecTech (Uttoxeter, United Kingdom) was contacted. This company is fully equipped and has a broad experience in the preparation of synthetic Refinery Gas samples for PT purposes. It was decided to organize a proficiency study for Refinery Gas in 2022 for the first time.

In this interlaboratory study 19 laboratories in 13 different countries registered for participation. See appendix 3 for the number of participants per country. In this report the results of the Refinery Gas proficiency test are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

## 2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). To optimize the costs for the participating laboratories it was decided to prepare one Refinery Gas mixture. The mixture was divided over a batch of 21 cylinders. The cylinder size is a cost-effective one-liter cylinder. Each cylinder was uniquely numbered and labelled #22015. The limited cylinder size is chosen to optimize transport and handling costs.

Sample analyzes for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory.

The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

## 2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO/IEC17043:2010. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires. EffecTech is accredited in conformance with ISO/IEC17043:2010 by UKAS (no. 4719) and ISO17025:2017 by UKAS (no. 0590).

## 2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is also electronically available through the iis website www.iisnl.com, from the FAQ page.

## 2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

## 2.4 SAMPLES

One batch of 21 one-liter cylinders with an artificial Refinery Gas mixture was prepared and tested for homogeneity by EffecTech (Uttoxeter, United Kingdom) in conformance with ISO Guide 35 and ISO/IEC17025 (job 21/0601). Each cylinder was uniquely numbered and labelled #22015. Every cylinder in the batch was analyzed using replicate measurements. The within bottle and between bottle variations were assessed in accordance with ISO Guide 35. This evaluation showed that all between bottle variations were small compared to the uncertainties on the reference values on each component.

The calculated repeatabilities were calculated per component and compared with 0.3 times the corresponding reproducibility of the reference test method in agreement with the procedure of ISO13528, Annex B2 in the next table.

| Component       | r (observed)<br>in %mol/mol | 0.3 * R (target)<br>in %mol/mol | reference<br>method |  |  |
|-----------------|-----------------------------|---------------------------------|---------------------|--|--|
| Hydrogen        | 0.0989                      | 1.0180                          | Horwitz             |  |  |
| Oxygen/Argon    | 0.0003                      | 0.0311                          | EN15984:22          |  |  |
| Nitrogen        | 0.0094                      | 0.1739                          | EN15984:22          |  |  |
| Carbon Monoxide | 0.0034                      | 0.0696                          | EN15984:22          |  |  |
| Carbon Dioxide  | 0.0028                      | 0.0236                          | EN15984:22          |  |  |
| Methane         | 0.0589                      | 0.2729                          | EN15984:22          |  |  |
| Ethane          | 0.0196                      | 0.0942                          | EN15984:22          |  |  |
| Ethene          | 0.0051                      | 0.0374                          | EN15984:22          |  |  |
| Propane         | 0.0739                      | 0.0715                          | EN15984:22          |  |  |
| Propene         | 0.0205                      | 0.0287                          | EN15984:22          |  |  |
| iso-Butane      | 0.0203                      | 0.0345                          | EN15984:22          |  |  |
| n-Butane        | 0.0169                      | 0.0364                          | EN15984:22          |  |  |
| trans-2-Butene  | 0.0018                      | 0.0068                          | Horwitz             |  |  |
| 1-Butene        | 0.0021                      | 0.0068                          | Horwitz             |  |  |
| iso-Butene      | 0.0017                      | 0.0048                          | Horwitz             |  |  |
| cis-2-Butene    | 0.0017                      | 0.0048                          | Horwitz             |  |  |
| iso-Pentane     | 0.0024                      | 0.0034                          | EN15984:22          |  |  |
| n-Pentane       | 0.0024                      | 0.0088                          | EN15984:22          |  |  |

Table 1: evaluation of the repeatabilities of subsamples #22015

The calculated repeatabilities are in agreement with 0.3 times the corresponding reproducibility of the reference test method. Therefore, homogeneity of the subsamples was assumed. For more details about choice of reference method see paragraph 4.1.

To each of the participating laboratories one 1L cylinder labelled #22015 was sent on January 26, 2022. An SDS was added to the sample package.

## 2.5 STABILITY OF THE SAMPLES

EffecTech (Uttoxeter, United Kingdom) declares that the prepared gas cylinders have a shelf life of at least 6 months. This is sufficient for the proficiency testing purposes.

## 2.6 ANALYZES

The participants were requested to determine: Hydrogen, Argon, Oxygen, Nitrogen, Carbon Monoxide, Carbon Dioxide, Hydrogen Sulfide, Methane, Ethane, Ethene, Ethyne, Propane, Propene, Propyne, Propadiene, iso-Butane, n-Butane, trans-2-Butene, 1-Butene, iso-Butene, cis-2-Butene, 1,3-Butadiene, iso-Pentane, n-Pentane, Other components with C5 or more C atoms (except iso-Butane and Pentane), Carbon content and Lower Calorific Value.

It was explicitly requested to treat the sample as if it was a routine sample and to report the test results using the indicated units on the report form and not to round the test results, but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the reference test methods (when applicable) that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

## 3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis/. The reported test results are tabulated per determination in appendices 1 and 2 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyzes). Additional or corrected test results are used for data analysis and original test results are placed under 'Remarks' in the result tables in appendices 1 and 2.

Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

## 3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care.

The assigned value is determined by consensus based on the test results of the group of participants after rejection of the statistical outliers and/or suspect data.

According to ISO13528 all (original received or corrected) results per determination were submitted to outlier tests. In the iis procedure for proficiency tests, outliers are detected prior to calculation of the mean, standard deviation and reproducibility. For small data sets, Dixon (up to 20 test results) or Grubbs (up to 40 test results) outlier tests can be used. For larger data sets (above 20 test results) Rosner's outlier test can be used. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test, and by R(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value, the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirements based on the target reproducibility in accordance with ISO13528. In this PT, the criterion of ISO13528, paragraph 9.2.1 was met for all evaluated tests, therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying these with a factor of 2.8.

## 3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis.

The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve (dotted line) was projected over the Kernel Density Graph (smooth line) for reference. The Gauss curve is calculated from the consensus value and the corresponding standard deviation.

## 3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements derived from e.g. ASTM or EN methods), the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation of this interlaboratory study.

The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available other target values were used, like Horwitz or an estimated reproducibility based on former is proficiency tests.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

 $z_{(target)}$  = (test result - average of PT) / target standard deviation

The  $z_{(target)}$  scores are listed in the result tables of appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. The usual interpretation of z-scores is as follows:

|     | z | < 1 | good           |
|-----|---|-----|----------------|
| 1 < | z | < 2 | satisfactory   |
| 2 < | z | < 3 | questionable   |
| 3 < | z |     | unsatisfactory |

## 4 EVALUATION

In this proficiency test some problems were encountered with the dispatch of the samples. Therefore, the reporting time on the data entry portal was extended with another week. One participant reported test results after the extended final reporting date and two other participants did not report any test results. Not all participants were able to report all tests requested.

In total 17 participants reported 357 numerical test results. Observed were 21 outlying test results, which is 5.9%. In proficiency studies outlier percentages of 3% - 7.5% are quite normal.

Not all data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

## 4.1 EVALUATION PER COMPONENT

In this section the reported test results are discussed per component. The test methods, which were used by the various laboratories, were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the original data in appendix 1. The abbreviations, used in these tables, are explained in appendix 4.

Test method EN15984 is used to evaluate the performance of the test results for Refinery Gas. The method version of 2017 describes only precision data for Carbon content and Lower Calorific Value. In February of 2022 a new version of this method was published. The precision data for the parameters Carbon content and Lower Calorific Value remained the same. Precision data for most of the components appeared to have been added to the test method in an informative annex. It was decided to use these published precision data for the evaluation of the components, except for Hydrogen. The mean of Hydrogen is far out of the application range mentioned in test method EN15984.

For components trans-2-Butene, iso-Butene and cis-2-Butene no precision data was given in test method EN15984. Therefore, the estimated reproducibility calculated by the Horwitz equation was used for the evaluation of these three components and also for Hydrogen.

One laboratory reported deviating test results for many of the gas composition test results. In total 10 test results of the 17 reported test results were statistical outliers. As the test results are not obtained independently, it was decided not to use any of the reported results of this laboratory for the statistical evaluation. This means that the remaining reported test results were excluded.

<u>Total of the composition results</u>: The total of the test results of the composition per laboratory was calculated by iis. Since the composition is requested as normalized the total should be 100%. Two calculated results were found to be lower than 100%. Both laboratories did not report test results for all components.

<u>Hydrogen</u>: The determination of this component was not problematic. No statistical outliers were observed but one test result was excluded. The calculated

reproducibility after rejection of the suspect data is in agreement with the estimated reproducibility calculated with the Horwitz equation.

Oxygen/Argon: Test method EN15984:22 describes Argon and Oxygen combined as the second Refinery heating gas component. In this PT both components were requested separately. Many participants commented that these two gases co-elute and that the total of the two gases was submitted either as Argon or as Oxygen. Therefore, it was decided to evaluate these components as the sum of Oxygen and Argon.

The determination of the sum of both components was problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the requirements of EN15984:22.

- <u>Nitrogen</u>: The determination of this component was not problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of EN15984:22.
- <u>Carbon Monoxide</u>: The determination of this component was not problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of EN15984:22.
- <u>Carbon Dioxide</u>: The determination of this component was not problematic. No statistical outliers were observed but one test result was excluded. The calculated reproducibility after rejection of the suspect data is in agreement with the requirements of EN15984:22.
- <u>Methane</u>: The determination of this component was not problematic. No statistical outliers were observed but one test result was excluded. The calculated reproducibility after rejection of the suspect data is in agreement with the requirements of EN15984:22.
- <u>Ethane</u>: The determination of this component was not problematic. One statistical outlier was observed and one other test result was excluded. The calculated reproducibility after rejection of the suspect data is in agreement with the requirements of EN15984:22.
- <u>Ethene</u>: The determination of this component was not problematic. No statistical outliers were observed but one test result was excluded. The calculated reproducibility after rejection of the suspect data is in agreement with the requirements of EN15984:22.
- <u>Propane</u>: The determination of this component was problematic. No statistical outliers were observed but one test result was excluded. The calculated reproducibility after rejection of the suspect data is not in agreement with the requirements of EN15984:22.

- <u>Propene</u>: The determination of this component was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of EN15984:22.
- <u>iso-Butane</u>: The determination of this component was problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the requirements of EN15984:22.
- <u>n-Butane</u>: The determination of this component was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of EN15984:22.
- <u>trans-2-Butene</u>: The determination of this component was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the estimated reproducibility calculated with the Horwitz equation.
- <u>1-Butene</u>: The determination of this component was problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement the requirements of EN15984:22.
- <u>iso-Butene</u>: The determination of this component was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the estimated reproducibility calculated with the Horwitz equation.
- <u>cis-2-Butene</u>: The determination of this component was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the estimated reproducibility calculated with the Horwitz equation.
- iso-Pentane: The determination of this component was problematic. Three statistical outliers were observed and one test result was excluded. The calculated reproducibility after rejection of the suspect data is not in agreement with the requirements of EN15984:22.
- <u>n-Pentane</u>: The determination of this component may be problematic for a number of laboratories. Four statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of EN15984:22.
- <u>Carbon content</u>: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of EN15984:22.
- <u>Lower Calorific Value</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of EN15984:22.

The majority of the participants agreed on a concentration near or below the limit of detection for all other requested components mentioned in paragraph 2.5. Therefore, no z-scores were calculated. The reported test results of these components are given in appendix 2.

## 4.2 PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES

A comparison has been made between the reproducibility as declared by the reference test method and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average, the calculated reproducibility (2.8 \* standard deviation) and the target reproducibility derived from literature reference test methods (in casu ASTM and EN standards) or estimated using the Horwitz equation are presented in the next table.

| Component             | unit     | n  | average | 2.8 * sd | R(target) |
|-----------------------|----------|----|---------|----------|-----------|
| Hydrogen              | %mol/mol | 16 | 55.58   | 1.68     | 3.40      |
| Oxygen/Argon          | %mol/mol | 13 | 0.125   | 0.125    | 0.109     |
| Nitrogen              | %mol/mol | 15 | 2.617   | 0.553    | 0.581     |
| Carbon Monoxide       | %mol/mol | 15 | 0.820   | 0.180    | 0.235     |
| Carbon Dioxide        | %mol/mol | 16 | 0.503   | 0.084    | 0.079     |
| Methane               | %mol/mol | 16 | 19.85   | 0.90     | 0.91      |
| Ethane                | %mol/mol | 15 | 7.913   | 0.267    | 0.311     |
| Ethene                | %mol/mol | 15 | 1.985   | 0.116    | 0.124     |
| Propane               | %mol/mol | 16 | 5.032   | 0.360    | 0.236     |
| Propene               | %mol/mol | 15 | 1.601   | 0.089    | 0.095     |
| iso-Butane            | %mol/mol | 15 | 1.752   | 0.133    | 0.112     |
| n-Butane              | %mol/mol | 15 | 1.361   | 0.109    | 0.118     |
| trans-2-Butene        | %mol/mol | 15 | 0.146   | 0.020    | 0.022     |
| 1-Butene              | %mol/mol | 15 | 0.146   | 0.021    | 0.015     |
| iso-Butene            | %mol/mol | 13 | 0.098   | 0.015    | 0.016     |
| cis-2-Butene          | %mol/mol | 14 | 0.097   | 0.015    | 0.015     |
| iso-Pentane           | %mol/mol | 12 | 0.176   | 0.015    | 0.009     |
| n-Pentane             | %mol/mol | 13 | 0.156   | 0.025    | 0.027     |
| Carbon content        | g/100g   | 11 | 67.61   | 0.97     | 2.16      |
| Lower Calorific Value | kJ/100g  | 11 | 4929    | 118      | 120       |

Table 2: reproducibilities of tests of sample #22015

Without further statistical calculations it can be concluded that for many components and the calculated parameters there is a good compliance of the group of participating laboratories with the relevant reference test method. The problematic components have been discussed in paragraph 4.1.

#### 4.3 OVERVIEW OF THE PROFICIENCY TEST OF FEBRUARY 2022

|                                    | February<br>2022 |
|------------------------------------|------------------|
| Number of reporting laboratories   | 17               |
| Number of test results             | 357              |
| Number of statistical outliers     | 21               |
| Percentage of statistical outliers | 5.9%             |

Table 3: overview of this proficiency test

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared against the requirements of the reference methods. The conclusions are given the following table.

| Component             | February<br>2022 |
|-----------------------|------------------|
| Hydrogen              | ++               |
| Oxygen/Argon          | -                |
| Nitrogen              | +/-              |
| Carbon Monoxide       | +                |
| Carbon Dioxide        | +/-              |
| Methane               | +/-              |
| Ethane                | +                |
| Ethene                | +/-              |
| Propane               | -                |
| Propene               | +                |
| iso-Butane            | -                |
| n-Butane              | +/-              |
| trans-2-Butene        | +/-              |
| 1-Butene              | -                |
| iso-Butene            | +/-              |
| cis-2-Butene          | +/-              |
| iso-Pentane           | -                |
| n-Pentane             | +/-              |
| Carbon content        | ++               |
| Lower Calorific Value | +/-              |

Table 4: comparison determinations against the reference method

The following performance categories were used:

- ++ : group performed much better than the reference test method
- + : group performed better than the reference test method
- +/- : group performance equals the reference test method
- : group performed worse than the reference test method
- -- : group performed much worse than the reference test method
- n.e. : not evaluated

## 5 DISCUSSION

The consensus values as determined in this PT are compared with the average values from the homogeneity testing by EffecTech (Uttoxeter, United Kingdom) in the following table. From this comparison it is clear that the average values as determined in this PT are very well in line with the values as determined during the preparation of the gas cylinders.

| Component       | EffecTech<br>in %mol/mol | Average PT<br>in %mol/mol | Differences<br>in %mol/mol | z-score |
|-----------------|--------------------------|---------------------------|----------------------------|---------|
| Hydrogen        | 55.448                   | 55.583                    | -0.135                     | -0.11   |
| Oxygen/Argon    | 0.100                    | 0.125                     | -0.025                     | -0.64   |
| Nitrogen        | 2.510                    | 2.617                     | -0.107                     | -0.52   |
| Carbon Monoxide | 0.808                    | 0.820                     | -0.011                     | -0.14   |
| Carbon Dioxide  | 0.499                    | 0.503                     | -0.004                     | -0.14   |
| Methane         | 19.907                   | 19.846                    | 0.061                      | 0.19    |
| Ethane          | 7.989                    | 7.913                     | 0.076                      | 0.68    |
| Ethene          | 1.997                    | 1.985                     | 0.011                      | 0.25    |
| Propane         | 5.087                    | 5.032                     | 0.055                      | 0.65    |
| Propene         | 1.612                    | 1.601                     | 0.011                      | 0.32    |
| iso-Butane      | 1.796                    | 1.752                     | 0.044                      | 1.11    |
| n-Butane        | 1.398                    | 1.361                     | 0.037                      | 0.89    |
| trans-2-Butene  | 0.152                    | 0.146                     | 0.006                      | 0.73    |
| 1-Butene        | 0.152                    | 0.146                     | 0.006                      | 1.15    |
| iso-Butene      | 0.100                    | 0.098                     | 0.002                      | 0.33    |
| cis-2-Butene    | 0.102                    | 0.097                     | 0.004                      | 0.81    |
| iso-Pentane     | 0.180                    | 0.175                     | 0.005                      | 1.37    |
| n-Pentane       | 0.163                    | 0.156                     | 0.007                      | 0.70    |

Table 5: comparison of average values of this PT with values determined by EffecTech (Uttoxeter, United Kingdom)

| lab  | method   | iis calculated | remarks                                                           |
|------|----------|----------------|-------------------------------------------------------------------|
| 444  | EN15984  | 100            |                                                                   |
| 446  |          |                |                                                                   |
| 1026 | EN15984  | 99.9871        |                                                                   |
| 1040 | EN15984  | 100.04         |                                                                   |
| 1062 | EN15984  | 99.9999        |                                                                   |
| 1069 | UOP539   | 99.9996        |                                                                   |
| 1081 |          | 99.908         |                                                                   |
| 1140 | D7833    | 99.999         |                                                                   |
| 1528 | UOP539   | 99.981         |                                                                   |
| 1635 | UOP539   | 94.1           | not 100%, reported zero for some components                       |
| 1737 | EN15984  | 100            |                                                                   |
| 1741 | UOP539   | 100            |                                                                   |
| 1961 | EN15984  | 100.001        |                                                                   |
| 1964 | In house | 99.9953        | did not report individual C4 compounds, only the sum of C4: 3.92% |
| 6142 | EN15984  | 96.3255        | not 100%, did not report all components                           |
| 6203 | UOP539   | 100            |                                                                   |
| 6369 | ISO17025 | 100            |                                                                   |
| 6404 | EN15984  | 100.001        |                                                                   |
| 9008 |          |                |                                                                   |

# Determination of Hydrogen on sample #22015; results in %mol/mol

| la                                                                                                           | ab                                                                                                                                          | metho                                                       | bd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | value                                                               | mar  | 'k       | z(targ)  | rem   | arks      |          |           |      |      |      |      |      |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------|------|----------|----------|-------|-----------|----------|-----------|------|------|------|------|------|
| 44                                                                                                           | 14<br>16                                                                                                                                    | EN159                                                       | 984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 55.761                                                              | С    |          | 0.15     | first | reported  | 1: 55.65 | 8         |      |      |      |      |      |
| 102<br>104<br>106<br>106<br>108<br>114<br>152<br>163<br>173<br>174<br>196<br>614<br>620<br>638<br>640<br>900 | 446<br>1026<br>1040<br>1062<br>1069<br>1081<br>1140<br>1528<br>1635<br>1737<br>1741<br>1961<br>1964<br>6142<br>6203<br>6369<br>6404<br>9008 |                                                             | 444       EN15984       55.761       C       0.15       Inst reported: 55.558         446         first reported: 54.41833333         1026       EN15984       55.80       0.18         1062       EN15984       55.7340       0.12         1069       UOP539       55.32       -0.22         1081       55.997       0.34         1140       D7833       55.538       C       -0.04         1528       UOP539       56.10       C       0.43         1635       UOP539       55.04       ex       -0.45         1635       UOP539       55.75       0.14         1737       55.57       -0.01         1741       UOP539       55.75       0.14         1961       EN15984       55.875       0.24         1964       In house       54.953       -0.52         3142       EN15984       55.557       -0.02         3203       UOP539       54.02       -1.29         3369       ISO17025       56.3179       0.61         3404       EN15984       56.325       0.61         3008     < |      |                                                                     |      |          |          |       |           | 4.1      |           |      |      |      |      |      |
|                                                                                                              |                                                                                                                                             | norma                                                       | lity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | suspect                                                             |      |          |          |       |           |          |           |      |      |      |      |      |
| compa                                                                                                        | re                                                                                                                                          | n<br>outlier<br>mean<br>st.dev<br>R(calc<br>st.dev<br>R(Hor | s<br>(n)<br>. (n)<br>2.)<br>.(Horwit<br>witz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tz)  | 16<br>0 (+1ex)<br>55.5830<br>0.60100<br>1.6828<br>1.21440<br>3.4003 |      |          |          |       |           |          |           |      |      |      |      |      |
| oompu                                                                                                        |                                                                                                                                             | R(EN1                                                       | 15984:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)   | 1.5684                                                              |      |          |          | appl  | ication r | ange: 3  | .60 - 4.6 | 60   |      |      |      |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                        |                                                                                                                                             | Δ                                                           | ۵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×    | Δ                                                                   |      | <u>A</u> | <u>.</u> | A     | <u>A</u>  | <b>A</b> | Δ         | Δ    | Δ    | ۵    | Δ    |      |
| 50                                                                                                           |                                                                                                                                             | 1026                                                        | 1964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1635 | 1069                                                                | 1140 | 6142     | 1737     | 1062  | 1741      | 444      | 1040      | 1961 | 1081 | 1528 | 6369 | 6404 |
|                                                                                                              |                                                                                                                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                                                     |      |          |          |       |           |          |           |      |      |      |      |      |
| 0.8 -<br>0.7 -<br>0.6 -<br>0.5 -<br>0.4 -<br>0.3 -<br>0.2 -<br>0.1 -<br>5                                    | 2                                                                                                                                           | 53                                                          | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 55 56                                                               |      | nsity    | 58       |       |           |          |           |      |      |      |      |      |

# Determination of Oxygen/Argon on sample #22015; results in %mol/mol

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        | lab        | method      |                    |            | Ar    | <b>O</b> <sub>2</sub> | Ar+O <sub>2</sub> | mark    | z(targ) | remarks    |         |             |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------|-------------|--------------------|------------|-------|-----------------------|-------------------|---------|---------|------------|---------|-------------|-----|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                      | 444        | EN15984     |                    |            | 0.096 |                       | 0.096             |         | -0.75   |            |         |             |     |
| 1026 EN15984 0.3393 0.3393 G(0.01) 5.48 $1040 EN15984 0.000 0.1017 0.1017 - 0.60$ $1069$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                      | 446        |             |                    |            |       |                       |                   |         |         |            |         |             |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                     | 026        | EN15984     |                    |            |       | 0.3393                | 0.3393            | G(0.01) | 5.48    |            |         |             |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                     | 040        | EN15984     |                    |            | 0.13  | 0.00                  | 0.13              |         | 0.12    |            |         |             |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                     | 062        | EN15984     |                    |            | 0.000 | 0.1017                | 0.1017            |         | -0.60   |            |         |             |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                     | 069        |             |                    |            |       |                       |                   |         |         |            |         |             |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                     | 180        | D7000       |                    |            |       | 0.127                 | 0.127             |         | 0.05    |            |         |             |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                     | 140        | D7833       |                    |            |       | 0.130                 | 0.13              |         | 0.12    |            |         |             |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16                                     | 020<br>635 | 00F559      |                    |            | 0.105 |                       | 0.105             |         | -0.51   |            |         |             |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                     | 737        |             |                    |            |       |                       |                   |         |         |            |         |             |     |
| $     \begin{array}{ccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                     | 741        | LIOP530     |                    |            |       | 0.11                  | 0.11              |         | -0.30   |            |         |             |     |
| 1964 In house 0.047 0 0.047 -2.00 6142 EN15984 0.176 0.176 1.30 6203 UOP539 0 0 .15 0.15 0.64 6369 ISO17025 0.1229 0.1229 -0.06 6404 EN15984 0.097 0.097 -0.72 9008 normality n ot OKn 0.1251 0.15 st.dev. (n) 0.04476 R(calc.) 0.1253 st.dev. (EN15984:22) 0.1253 st.dev. (EN15984:22) 0.1094 application range: 0.20 - 2.30 $R(EN15984:22) 0.1094 application range: 0.20 - 2.30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19                                     | 961        | EN15984     |                    |            |       | 0.234                 | 0.234             |         | 2 79    |            |         |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19                                     | 964        | In house    |                    |            | 0 047 | 0                     | 0.047             |         | -2 00   |            |         |             |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61                                     | 142        | EN15984     |                    |            | 0.176 |                       | 0.176             |         | 1.30    |            |         |             |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62                                     | 203        | UOP539      |                    |            | 0     | 0.15                  | 0.15              |         | 0.64    |            |         |             |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63                                     | 369        | ISO17025    |                    |            |       | 0.1229                | 0.1229            |         | -0.06   |            |         |             |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64                                     | 404        | EN15984     |                    |            |       | 0.097                 | 0.097             |         | -0.72   |            |         |             |     |
| $normality \\ n \\ outliers \\ mean (n) \\ st.dev. (n) \\ R(calc.) \\ st.dev. (EN15984:22) \\ R(EN15984:22) \\ 0.1094 \\ application range: 0.20 - 2.30 \\ \\ n $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90                                     | 800        |             |                    |            |       |                       |                   |         |         |            |         |             |     |
| $normality \\ n \\ outliers \\ st.dev. (n) \\ R(calc.) \\ st.dev. (EN15984:22) \\ R(EN15984:22) \\ 0.1094 \\ application range: 0.20 - 2.30 \\ x \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |            |             |                    |            |       |                       |                   |         |         |            |         |             |     |
| n = 13 = 13 = 13 = 13 = 13 = 13 = 13 = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |            | normality   |                    |            |       |                       | not OK            |         |         |            |         |             |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |            | n           |                    |            |       |                       | 13                |         |         |            |         |             |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |            | outliers    |                    |            |       |                       | 1                 |         |         |            |         |             |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |            | mean (n)    |                    |            |       |                       | 0.1251            |         |         |            |         |             |     |
| $\begin{array}{c} \begin{array}{c} (car.) \\ st.dev.(EN15984:22) \\ R(EN15984:22) \end{array} \\ \begin{array}{c} 0.1253 \\ 0.03909 \\ 0.1094 \end{array} \\ \begin{array}{c} application range: 0.20 - 2.30 \end{array} \\ \begin{array}{c} x \\ x \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |            | st.dev. (n) |                    |            |       |                       | 0.04476           |         |         |            |         |             |     |
| $\begin{array}{c} \text{Sidev.(EN15984:22)} \\ \text{R(EN15984:22)} \\ \text$                                                                                                                                                                                                                                                                                                                                   |                                        |            | R(calc.)    | 45004.00           | <b>)</b> \ |       |                       | 0.1253            |         |         |            |         |             |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |            | R/EN1508    | 10904.22<br>(1·22) | <u>-</u> ) |       |                       | 0.03909           |         |         | applicatio | n range | · 0 20 - 2  | 30  |
| 104<br>35<br>13<br>13<br>13<br>14<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |            |             | H.22)              |            |       |                       | 0.1034            |         |         | applicatio | manye   | 5. 0.20 - 2 | .50 |
| 35 <td>04 -</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04 -                                   |            |             |                    |            |       |                       |                   |         |         |            |         |             |     |
| 35     4     60     60     4     60     60     4     60       25     2     2     2     2     2     2     2       0     0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     0     0     0       0     0     0     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4                                    |            |             |                    |            |       |                       |                   |         |         |            |         |             |     |
| 103 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.35 -                                 |            |             |                    |            |       |                       |                   |         |         |            |         |             | *   |
| 25 - 22 - 22 - 22 - 22 - 22 - 22 - 22 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3 -                                  |            |             |                    |            |       |                       |                   |         |         |            |         |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.25 -                                 |            |             |                    |            |       |                       |                   |         |         |            |         |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2 -                                  |            |             |                    |            |       |                       |                   |         |         |            |         | 4           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15                                   |            |             |                    |            |       |                       |                   |         |         |            | ۵       |             |     |
| 0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J. 10 -                                |            |             |                    |            |       | •                     | Δ Δ               | A       | A       | Δ          |         |             |     |
| 136<br>136<br>137<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1 -                                  |            | Δ           | ۵                  | Δ          | Δ     | -                     |                   |         |         |            |         |             |     |
| 1986<br>1122.66<br>6.60.4<br>1124.1<br>1040<br>6.638.9<br>6.638.9<br>6.638.9<br>6.638.9<br>1144.0<br>6.638.9<br>6.638.9<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0<br>1144.0 | 0.05 -                                 | Δ          |             |                    |            |       |                       |                   |         |         |            |         |             |     |
| 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 8 7 7 8 8 8 8 7 7 7 8 8 8 8 7 7 7 8 8 8 8 7 7 7 8 8 8 8 7 7 7 8 8 8 8 7 7 7 8 8 8 8 8 7 7 7 8 8 8 8 8 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o ــــــــــــــــــــــــــــــــــــ | 4          | 4           | 4                  | 5          | 80    | <del>.</del>          | 6 -               | 0       | 0       | e          | 7       | <u>~</u>    | 9   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | 196        | 4           | 640                | 106        | 152   | 174                   | 636               | 101     | 114     | 620        | 614     | 196         | 102 |



# Determination of Nitrogen on sample #22015; results in %mol/mol

| lab   | method         |       | value   | 1   | mark    | z(targ) | r    | remarks      |         |            |       |      |      |      |      |
|-------|----------------|-------|---------|-----|---------|---------|------|--------------|---------|------------|-------|------|------|------|------|
| 444   | EN15984        |       | 2.499   | (   | C       | -0.57   | f    | irst report  | ed: 2.4 | 95         |       |      |      |      |      |
| 446   |                |       |         |     |         |         |      |              |         |            |       |      |      |      |      |
| 1026  | EN15984        |       | 2.9783  | (   | С       | 1.74    | f    | irst reporte | ed: 3.3 | 039        |       |      |      |      |      |
| 1040  | EN15984        |       | 2.55    |     |         | -0.32   |      |              |         |            |       |      |      |      |      |
| 1062  | EN15984        |       | 2.4709  |     |         | -0.70   |      |              |         |            |       |      |      |      |      |
| 1069  | UOP539         |       | 2.561   |     |         | -0.27   |      |              |         |            |       |      |      |      |      |
| 1081  |                |       | 2.563   |     |         | -0.26   |      |              |         |            |       |      |      |      |      |
| 1140  | D7833          |       | 2.688   | (   | С       | 0.34    | f    | irst report  | ed: 2.6 | 75         |       |      |      |      |      |
| 1528  | UOP539         |       | 2.445   |     |         | -0.83   |      |              |         |            |       |      |      |      |      |
| 1635  | UOP539         |       | 0.61    | (   | G(0.01) | -9.66   |      |              |         |            |       |      |      |      |      |
| 1737  |                |       | 2.54    |     | . ,     | -0.37   |      |              |         |            |       |      |      |      |      |
| 1741  | UOP539         |       | 2.47    |     |         | -0.71   |      |              |         |            |       |      |      |      |      |
| 1961  | EN15984        |       | 2.548   |     |         | -0.33   |      |              |         |            |       |      |      |      |      |
| 1964  | In house       |       | 2.723   |     |         | 0.51    |      |              |         |            |       |      |      |      |      |
| 6142  | EN15984        |       | 3.4035  | (   | G(0.05) | 3.79    |      |              |         |            |       |      |      |      |      |
| 6203  | UOP539         |       | 3.14    |     | . ,     | 2.52    |      |              |         |            |       |      |      |      |      |
| 6369  | ISO17025       |       | 2.5896  |     |         | -0.13   |      |              |         |            |       |      |      |      |      |
| 6404  | EN15984        |       | 2.487   |     |         | -0.63   |      |              |         |            |       |      |      |      |      |
| 9008  |                |       |         |     |         |         |      |              |         |            |       |      |      |      |      |
|       |                |       |         |     |         |         |      |              |         |            |       |      |      |      |      |
|       | normality      |       | not OK  |     |         |         |      |              |         |            |       |      |      |      |      |
|       | n              |       | 15      |     |         |         |      |              |         |            |       |      |      |      |      |
|       | outliers       |       | 2       |     |         |         |      |              |         |            |       |      |      |      |      |
|       | mean (n)       |       | 2.6169  |     |         |         |      |              |         |            |       |      |      |      |      |
|       | st.dev. (n)    |       | 0.19743 | 3   |         |         |      |              |         |            |       |      |      |      |      |
|       | R(calc.)       |       | 0.5528  |     |         |         |      |              |         |            |       |      |      |      |      |
|       | st.dev.(EN1598 | 4:22) | 0.20767 | 7   |         |         |      |              |         |            |       |      |      |      |      |
|       | R(EN15984:22)  | )     | 0.5815  |     |         |         | 6    | application  | n range | : 5.00 - 5 | 57.00 |      |      |      |      |
|       |                |       |         |     |         |         |      |              |         |            |       |      |      |      |      |
| 3.6 T |                |       |         |     |         |         |      |              |         |            |       |      |      |      |      |
| 34 -  |                |       |         |     |         |         |      |              |         |            |       |      |      |      | ×    |
|       |                |       |         |     |         |         |      |              |         |            |       |      |      |      |      |
| 3.2 - |                |       |         |     |         |         |      |              |         |            |       |      |      | Δ    |      |
| 3 -   |                |       |         |     |         |         |      |              |         |            |       |      | Δ    |      |      |
| 2.8 - |                |       |         |     |         |         |      |              |         |            |       |      |      |      |      |
| 26    |                |       |         |     |         |         |      |              |         |            | ۵     | Δ    |      |      |      |
| 2.0 - | <u>م</u>       | ▲     | ۵       | Δ   | 4       | Δ       | Δ    | Δ            | 4       | Δ          |       |      |      |      |      |
| 2.4 - | <b>4</b> –     |       |         |     |         |         |      |              |         |            |       |      |      |      |      |
| 2.2   |                |       |         |     |         |         |      |              |         |            |       |      |      |      |      |
| 2     |                |       | -       |     |         |         |      |              |         |            |       |      |      | ~    |      |
| 1635  | 1526           | 1062  | 6404    | 444 | 1737    | 1961    | 1040 | 1069         | 1081    | 6369       | 1140  | 1964 | 1026 | 6203 | 6142 |
| L     |                |       |         |     |         |         |      |              |         |            |       |      |      |      |      |



# Determination of Carbon Monoxide on sample #22015; results in %mol/mol

| lab                     | method              | value       | mark      | z(targ) | remarks         |           |          |      |      |      |      |
|-------------------------|---------------------|-------------|-----------|---------|-----------------|-----------|----------|------|------|------|------|
| 444                     | EN15984             | 0.771       | С         | -0.58   | first reported: | 0.770     |          |      |      |      |      |
| 446                     |                     |             | 0         |         | Constant of 1   | 0 70770   |          |      |      |      |      |
| 1026                    | EN15984             | 0.8099      | C         | -0.12   | first reported; | 0.78773   | 3333     |      |      |      |      |
| 1040                    | EN15904<br>EN15984  | 0.03        |           | -0.12   |                 |           |          |      |      |      |      |
| 1069                    | UOP539              | 0 789       |           | -0.20   |                 |           |          |      |      |      |      |
| 1081                    |                     | 0.721       |           | -1.18   |                 |           |          |      |      |      |      |
| 1140                    | D7833               | 0.131       | C,G(0.01) | -8.22   | first reported: | 0.040     |          |      |      |      |      |
| 1528                    | UOP539              | 0.851       | . ,       | 0.37    |                 |           |          |      |      |      |      |
| 1635                    | UOP539              | 0.0         | G(0.05)   | -9.79   |                 |           |          |      |      |      |      |
| 1737                    |                     | 0.85        |           | 0.36    |                 |           |          |      |      |      |      |
| 1/41                    | UOP539              | 0.81        |           | -0.12   |                 |           |          |      |      |      |      |
| 1901                    | EN 15984            | 1.018       |           | 2.37    |                 |           |          |      |      |      |      |
| 6142                    | FN15984             | 0.774       |           | -0.55   |                 |           |          |      |      |      |      |
| 6203                    | UOP539              | 0.80        |           | -0.24   |                 |           |          |      |      |      |      |
| 6369                    | ISO17025            | 0.8324      |           | 0.15    |                 |           |          |      |      |      |      |
| 6404                    | EN15984             | 0.821       |           | 0.01    |                 |           |          |      |      |      |      |
| 9008                    |                     |             |           |         |                 |           |          |      |      |      |      |
|                         |                     |             |           |         |                 |           |          |      |      |      |      |
|                         | normality           | not OK      |           |         |                 |           |          |      |      |      |      |
|                         | n                   | 15          |           |         |                 |           |          |      |      |      |      |
|                         | mean (n)            | ∠<br>0 8198 |           |         |                 |           |          |      |      |      |      |
|                         | st.dev. (n)         | 0.06418     |           |         |                 |           |          |      |      |      |      |
|                         | R(calc.)            | 0.1797      |           |         |                 |           |          |      |      |      |      |
|                         | st.dev.(EN15984:2   | 22) 0.08376 |           |         |                 |           |          |      |      |      |      |
|                         | R(EN15984:22)       | 0.2345      |           |         | application ra  | nge: 0.50 | ) – 3.10 |      |      |      |      |
|                         |                     |             |           |         |                 |           |          |      |      |      |      |
| <sup>1.1</sup> T        |                     |             |           |         |                 |           |          |      |      |      |      |
| 1                       |                     |             |           |         |                 |           |          |      |      |      | Δ    |
| 09-                     |                     |             |           |         |                 |           |          |      |      |      |      |
| 0.9 T                   |                     |             |           |         | •               |           | <b>A</b> | Δ    | Δ    | Δ    |      |
| 0.8                     | Δ                   | <u>م</u> ۵  | Δ         | Δ Δ     | <u> </u>        |           |          |      |      |      |      |
| 0.7                     | ۵                   |             |           |         |                 |           |          |      |      |      |      |
| 0.6                     |                     |             |           |         |                 |           |          |      |      |      |      |
|                         |                     |             |           |         |                 |           |          |      |      |      |      |
| 0.5 <u>-</u><br>32<br>2 | 1140<br>1081<br>444 | 1964        | 1062      | 6203    | 1741            | 6142      | 1040     | 6369 | 1737 | 1528 | 1961 |
|                         |                     |             |           |         |                 |           |          |      |      |      |      |



## Determination of Carbon Dioxide on sample #22015; results in %mol/mol

| la     | b  | method         |       | value | Э           | mark | z(tar | ·g)  | remarks     |          |         |         |        |      |      |      |
|--------|----|----------------|-------|-------|-------------|------|-------|------|-------------|----------|---------|---------|--------|------|------|------|
| 44     | 14 | EN15984        |       | 0.489 | )           | С    | -0.   | 51   | first repor | ted: 0.4 | 88      |         |        |      |      |      |
| 44     | 16 |                |       |       |             |      |       |      |             |          |         |         |        |      |      |      |
| 102    | 26 | EN15984        |       | 0.485 | 59          | С    | -0.   | 62   | first repor | ted: 0.4 | 9223333 | 33      |        |      |      |      |
| 104    | 10 | EN15984        |       | 0.48  |             |      | -0.   | 83   |             |          |         |         |        |      |      |      |
| 106    | 62 | EN15984        |       | 0.496 | 69          |      | -0.   | 23   |             |          |         |         |        |      |      |      |
| 106    | 59 | UOP539         |       | 0.504 | 1           |      | 0.    | 02   |             |          |         |         |        |      |      |      |
| 108    | 31 |                |       | 0.503 | 3           |      | -0.   | 01   |             |          |         |         |        |      |      |      |
| 114    | 10 | D7833          |       | 0.544 | 1           |      | 1.    | 45   |             |          |         |         |        |      |      |      |
| 152    | 28 | UOP539         |       | 0.500 | )           |      | -0.   | 12   |             |          |         |         |        |      |      |      |
| 163    | 35 | UOP539         |       | 0.5   |             | ex   | -0.   | 12   | test result | t exclud | ed, see | paragra | ph 4.1 |      |      |      |
| 173    | 37 |                |       | 0.51  |             |      | 0.    | 24   |             |          |         |         |        |      |      |      |
| 174    | 11 | UOP539         |       | 0.50  |             |      | -0.   | 12   |             |          |         |         |        |      |      |      |
| 196    | 51 | EN15984        |       | 0.506 | j<br>N      |      | 0.    | 09   |             |          |         |         |        |      |      |      |
| 196    | 54 | In house       |       | 0.426 | 5           |      | -2.   | 75   |             |          |         |         |        |      |      |      |
| 614    | 12 | EN15984        |       | 0.561 | 1           |      | 2.    | 05   |             |          |         |         |        |      |      |      |
| 620    | )3 | UOP539         |       | 0.51  | -           |      | 0.    | 24   |             |          |         |         |        |      |      |      |
| 636    | 59 | ISO17025       |       | 0.537 | 6           |      | 1.    | 22   |             |          |         |         |        |      |      |      |
| 640    | )4 | EN15984        |       | 0.500 | )           |      | -0.   | 12   |             |          |         |         |        |      |      |      |
| 900    | 18 |                |       |       |             |      |       |      |             |          |         |         |        |      |      |      |
|        |    | n ormality     |       | not O |             |      |       |      |             |          |         |         |        |      |      |      |
|        |    | normality      |       | 16    | 'n          |      |       |      |             |          |         |         |        |      |      |      |
|        |    | outliore       |       | 0 (±1 | <b>0</b> Y) |      |       |      |             |          |         |         |        |      |      |      |
|        |    | mean (n)       |       | 0 (+1 | 57)<br>52   |      |       |      |             |          |         |         |        |      |      |      |
|        |    | et dev (n)     |       | 0.000 | 284         |      |       |      |             |          |         |         |        |      |      |      |
|        |    | R(calc.)       |       | 0.023 | 26<br>26    |      |       |      |             |          |         |         |        |      |      |      |
|        |    | st dev (EN1508 | 4.22) | 0.000 | 312         |      |       |      |             |          |         |         |        |      |      |      |
|        |    | R(FN15984-22)  | )     | 0.020 | 37          |      |       |      | applicatio  | n range  | 0 40 -  | 10.00   |        |      |      |      |
|        |    |                | /     | 0.070 |             |      |       |      | apprioutio  | in range | . 0. 10 | 10.00   |        |      |      |      |
| 06-    |    |                |       |       |             |      |       |      |             |          |         |         |        |      |      |      |
| 0.58   |    |                |       |       |             |      |       |      |             |          |         |         |        |      |      |      |
| 0.56   |    |                |       |       |             |      |       |      |             |          |         |         |        |      |      |      |
| 0.54 - |    |                |       |       |             |      |       |      |             |          |         |         |        |      | ۵    |      |
| 0.52 - |    |                |       |       |             |      |       |      |             |          |         |         |        | 4    |      |      |
| 0.5    |    |                |       |       | ¥           |      |       |      | Δ           | Δ        | Δ       | Δ       | Δ      |      |      |      |
| 0.48 - |    | <u>م</u>       | Δ     | Δ     |             | -    | -     | -    |             |          |         |         |        |      |      |      |
| 0.46 - |    | -              |       |       |             |      |       |      |             |          |         |         |        |      |      |      |
| 0.44   |    |                |       |       |             |      |       |      |             |          |         |         |        |      |      |      |
| 0.42   |    |                |       |       |             |      |       |      |             |          |         |         |        |      |      |      |
| 0.4    |    |                |       |       |             |      |       |      |             |          |         |         |        |      |      |      |
| 1964   |    | 1040           | 444   | 1062  | 1635        | 1528 | 1741  | 6404 | 1081        | 1069     | 1961    | 1737    | 6203   | 6369 | 1140 | 6142 |
|        |    |                |       |       |             |      |       |      |             |          |         |         |        |      |      |      |



## Determination of Methane on sample #22015; results in %mol/mol

|               | lab  | method      |          | value |          | mark | z(targ) | rem   | arks      |           |          |         |      |      |      |      |
|---------------|------|-------------|----------|-------|----------|------|---------|-------|-----------|-----------|----------|---------|------|------|------|------|
|               | 444  | EN15984     |          | 19.99 | 6        | С    | 0.46    | first | reported  | 1: 19.959 | 9        |         |      |      |      |      |
|               | 446  |             |          |       |          |      |         |       |           |           |          |         |      |      |      |      |
|               | 1026 | EN15984     |          | 20.12 | 241      | С    | 0.86    | first | reported  | 1: 20.044 | 468333   |         |      |      |      |      |
|               | 1040 | EN15984     |          | 19.97 |          |      | 0.38    |       |           |           |          |         |      |      |      |      |
|               | 1062 | EN15984     |          | 20.03 | 96       |      | 0.60    |       |           |           |          |         |      |      |      |      |
|               | 1069 | UOP539      |          | 19.89 | 82       |      | 0.16    |       |           |           |          |         |      |      |      |      |
|               | 1081 |             |          | 19.83 | 6        | -    | -0.03   |       |           |           |          |         |      |      |      |      |
|               | 1140 | D7833       |          | 20.20 | )7       | C    | 1.11    | first | reported  | 1: 20.229 | 9        |         |      |      |      |      |
|               | 1528 | UOP539      |          | 19.61 |          | C    | -0.73   | first | reported  | 1: 20.09  | (        |         |      |      |      |      |
|               | 1635 | UOP539      |          | 19.23 | 5        | ex   | -1.90   | test  | result ex | cluded,   | see pa   | ragraph | 4.1  |      |      |      |
|               | 1/3/ |             |          | 20.19 | )        |      | 1.06    |       |           |           |          |         |      |      |      |      |
|               | 1/41 | UUP539      |          | 19.41 | 2        |      | -1.35   |       |           |           |          |         |      |      |      |      |
|               | 1064 |             |          | 10.07 | 34       |      | -1.40   |       |           |           |          |         |      |      |      |      |
|               | 6142 | EN1508/     |          | 19.07 | 1        |      | -1.25   |       |           |           |          |         |      |      |      |      |
|               | 6203 |             |          | 20 44 | • 1      |      | -1.20   |       |           |           |          |         |      |      |      |      |
|               | 6360 | 19017025    |          | 10.65 | 20       |      | -0.60   |       |           |           |          |         |      |      |      |      |
|               | 6404 | EN15984     |          | 19.03 | 23<br>'5 |      | -0.00   |       |           |           |          |         |      |      |      |      |
|               | 9008 | LINISSOF    |          |       | 0        |      | -1.14   |       |           |           |          |         |      |      |      |      |
|               | 0000 |             |          |       |          |      |         |       |           |           |          |         |      |      |      |      |
|               |      | normality   |          | OK    |          |      |         |       |           |           |          |         |      |      |      |      |
|               |      | n           |          | 16    |          |      |         |       |           |           |          |         |      |      |      |      |
|               |      | outliers    |          | 0 (+1 | ex)      |      |         |       |           |           |          |         |      |      |      |      |
|               |      | mean (n)    |          | 19.84 | -6Ó      |      |         |       |           |           |          |         |      |      |      |      |
|               |      | st.dev. (n) |          | 0.323 | 13       |      |         |       |           |           |          |         |      |      |      |      |
|               |      | R(calc.)    |          | 0.904 | 8        |      |         |       |           |           |          |         |      |      |      |      |
|               |      | st.dev.(EN1 | 5984:22) | 0.324 | 13       |      |         |       |           |           |          |         |      |      |      |      |
|               |      | R(EN15984:  | 22)      | 0.907 | 6        |      |         | appl  | ication r | ange: 4   | .00 – 20 | 0.00    |      |      |      |      |
|               |      |             |          |       |          |      |         |       |           |           |          |         |      |      |      |      |
| <sup>21</sup> |      |             |          |       |          |      |         |       |           |           |          |         |      |      |      |      |
|               |      |             |          |       |          |      |         |       |           |           |          |         |      |      |      |      |
| 20.5 -        |      |             |          |       |          |      |         |       |           |           |          |         |      |      |      | Δ    |
|               |      |             |          |       |          |      |         |       |           |           |          |         | ۵    | ۵    | Δ    |      |
| 20 -          |      |             |          |       |          |      | Δ       | 4     | 4         | Δ         | Δ        | Δ       |      |      |      |      |
| 10.5          |      |             |          |       | ۵        | ۵    |         |       |           |           |          |         |      |      |      |      |
| 19.5 -        |      | Δ Δ         | Δ        | Δ     |          |      |         |       |           |           |          |         |      |      |      |      |
|               | ×    |             |          |       |          |      |         |       |           |           |          |         |      |      |      |      |
| 19 -          |      |             |          |       |          |      |         |       |           |           |          |         |      |      |      |      |
| 18.5          |      |             |          |       |          |      |         |       |           |           |          |         |      |      |      |      |
| 10.0          | 1635 | 1961        | 8142     | 6404  | 1528     | 6369 | 1081    | 1964  | 1069      | 1040      | 444      | 1062    | 1026 | 1737 | 1140 | 6203 |
|               |      |             | -        | -     |          | -    |         |       |           |           |          |         |      |      |      | -    |



## Determination of Ethane on sample #22015; results in %mol/mol

| li               | ab | method    |        |        | value | )   | mark    | z(ta | rg) | remarks     |          |          |         |        |     |     |     |
|------------------|----|-----------|--------|--------|-------|-----|---------|------|-----|-------------|----------|----------|---------|--------|-----|-----|-----|
| 4                | 44 | EN1598    | 34     |        | 7.939 | )   | С       | 0.   | 23  | first repor | ted: 7.9 | 27       |         |        |     |     |     |
| 4                | 46 |           |        |        |       |     |         |      |     | -           |          |          |         |        |     |     |     |
| 10               | 26 | EN1598    | 84     |        | 7.976 | 6   | С       | 0.   | 57  | first repor | ted: 7.9 | 478166   | 67      |        |     |     |     |
| 10               | 40 | EN1598    | 84     |        | 7.86  |     |         | -0.  | 48  | •           |          |          |         |        |     |     |     |
| 10               | 62 | EN1598    | 34     |        | 7.998 | 33  |         | 0.   | 76  |             |          |          |         |        |     |     |     |
| 10               | 69 | UOP53     | 9      |        | 8.025 | 5   |         | 1.   | .00 |             |          |          |         |        |     |     |     |
| 10               | 81 |           |        |        | 7.920 | )   |         | 0.   | .06 |             |          |          |         |        |     |     |     |
| 11               | 40 | D7833     |        |        | 8.061 |     | С       | 1.   | .33 | first repor | ted:8.07 | 70       |         |        |     |     |     |
| 15               | 28 | UOP53     | 9      |        | 7.948 | 3   |         | 0.   | .31 |             |          |          |         |        |     |     |     |
| 16               | 35 | UOP53     | 9      |        | 7.66  |     | ex      | -2.  | 28  | test resul  | t exclud | ed, see  | paragra | ph 4.1 |     |     |     |
| 17               | 37 |           |        |        | 7.95  |     |         | 0.   | .33 |             |          |          |         | •      |     |     |     |
| 17               | 41 | UOP53     | 9      |        | 7.85  |     |         | -0.  | 57  |             |          |          |         |        |     |     |     |
| 19               | 61 | EN1598    | 34     |        | 7.756 | 6   |         | -1.  | 42  |             |          |          |         |        |     |     |     |
| 19               | 64 | In house  | е      |        | 8.003 | 37  |         | 0.   | .81 |             |          |          |         |        |     |     |     |
| 61               | 42 | EN1598    | 34     |        | 7.761 |     |         | -1.  | 37  |             |          |          |         |        |     |     |     |
| 62               | 03 | UOP53     | 9      |        | 8.38  |     | G(0.05) | 4.   | .20 |             |          |          |         |        |     |     |     |
| 63               | 69 | ISO170    | 25     |        | 7.831 | 1   | . ,     | -0.  | 74  |             |          |          |         |        |     |     |     |
| 64               | 04 | EN1598    | 34     |        | 7.821 |     |         | -0.  | 83  |             |          |          |         |        |     |     |     |
| 90               | 08 |           |        |        |       |     |         |      |     |             |          |          |         |        |     |     |     |
|                  |    |           |        |        |       |     |         |      |     |             |          |          |         |        |     |     |     |
|                  |    | normalit  | ty     |        | OK    |     |         |      |     |             |          |          |         |        |     |     |     |
|                  |    | n         | •      |        | 15    |     |         |      |     |             |          |          |         |        |     |     |     |
|                  |    | outliers  |        |        | 1 (+1 | ex) |         |      |     |             |          |          |         |        |     |     |     |
|                  |    | mean (r   | ı)     |        | 7.913 | 34  |         |      |     |             |          |          |         |        |     |     |     |
|                  |    | st.dev. ( | (n)    |        | 0.095 | 525 |         |      |     |             |          |          |         |        |     |     |     |
|                  |    | R(calc.)  |        |        | 0.266 | 67  |         |      |     |             |          |          |         |        |     |     |     |
|                  |    | st.dev.(  | EN1598 | 34:22) | 0.111 | 15  |         |      |     |             |          |          |         |        |     |     |     |
|                  |    | R(EN15    | 984:22 | )      | 0.311 | 2   |         |      |     | applicatio  | n range  | : 3.90 – | 10.00   |        |     |     |     |
|                  |    |           |        |        |       |     |         |      |     |             |          |          |         |        |     |     |     |
| <sup>8.5</sup> T |    |           |        |        |       |     |         |      |     |             |          |          |         |        |     |     |     |
| 8.4 -            |    |           |        |        |       |     |         |      |     |             |          |          |         |        |     |     | *   |
| 8.3 -            |    |           |        |        |       |     |         |      |     |             |          |          |         |        |     |     |     |
| 8.2              |    |           |        |        |       |     |         |      |     |             |          |          |         |        |     |     |     |
| 8.1 -            |    |           |        |        |       |     |         |      |     |             |          |          |         |        |     | •   |     |
| 8 -              |    |           |        |        |       |     |         |      |     |             |          | ▲        | Δ       | ۵      | Δ   | -   |     |
| 7.9              |    |           |        |        |       |     | •       |      | Δ   | Δ           | Δ        |          |         |        |     |     |     |
| 7.8              |    |           | •      | ۵      | 4     | Δ   | -       |      |     |             |          |          |         |        |     |     |     |
| 7.7              |    | 4         | -      |        |       |     |         |      |     |             |          |          |         |        |     |     |     |
| 7.6              |    |           |        |        |       |     |         |      |     |             |          |          |         |        |     |     |     |
| 7.5              |    |           | 2      | *      |       | 2   | 9       |      | Z   | 88          | 28       | 98       | 22      | *      | g   | 9   |     |
| 163              |    | 196       | 614    | 640    | 636   | 174 | 104     | 108  | 44  | 152         | 173      | 102      | 106     | 196    | 106 | 114 | 620 |
| L                |    |           |        |        |       |     |         |      |     |             |          |          |         |        |     |     |     |



# Determination of Ethene on sample #22015; results in %mol/mol

| lab    | method         | value    | mark | z(targ)    | remarks    |           |            |          |       |      |      |      |
|--------|----------------|----------|------|------------|------------|-----------|------------|----------|-------|------|------|------|
| 444    | EN15984        | 1.971    | С    | -0.32      | first repo | rted: 1.9 | 62         |          |       |      |      |      |
| 446    |                |          |      |            |            |           |            |          |       |      |      |      |
| 1026   | EN15984        | 1.965    | С    | -0.45      | first repo | rted: 1.9 | 6225       |          |       |      |      |      |
| 1040   | EN15984        | 1.97     |      | -0.34      |            |           |            |          |       |      |      |      |
| 1062   | EN15984        | 1.9917   |      | 0.15       |            |           |            |          |       |      |      |      |
| 1069   | UOP539         | 2.01     |      | 0.56       |            |           |            |          |       |      |      |      |
| 1081   |                | 1.975    |      | -0.23      |            |           |            |          |       |      |      |      |
| 1140   | D7833          | 2.016    | С    | 0.69       | first repo | rted: 2.0 | 18         |          |       |      |      |      |
| 1528   | UOP539         | 1.877    |      | -2.43      |            |           |            |          |       |      |      |      |
| 1635   | UOP539         | 1.92     | ex   | -1.47      | test resul | t exclud  | ed, see p  | baragrap | h 4.1 |      |      |      |
| 1737   |                | 2.01     |      | 0.56       |            |           |            |          |       |      |      |      |
| 1741   | UOP539         | 1.98     |      | -0.12      |            |           |            |          |       |      |      |      |
| 1961   | EN15984        | 2.005    |      | 0.45       |            |           |            |          |       |      |      |      |
| 1964   | In house       | 2.0006   |      | 0.35       |            |           |            |          |       |      |      |      |
| 6142   |                |          |      |            |            |           |            |          |       |      |      |      |
| 6203   | UOP539         | 2.07     |      | 1.91       |            |           |            |          |       |      |      |      |
| 6369   | ISO17025       | 1.9872   |      | 0.05       |            |           |            |          |       |      |      |      |
| 6404   | EN15984        | 1.949    |      | -0.81      |            |           |            |          |       |      |      |      |
| 9008   |                |          |      |            |            |           |            |          |       |      |      |      |
|        |                |          |      |            |            |           |            |          |       |      |      |      |
|        | normality      | not OK   |      |            |            |           |            |          |       |      |      |      |
|        | n<br>          | 15       |      |            |            |           |            |          |       |      |      |      |
|        | outliers       | 0 (+1ex) |      |            |            |           |            |          |       |      |      |      |
|        | mean (n)       | 1.9852   |      |            |            |           |            |          |       |      |      |      |
|        | st.dev. (n)    | 0.04143  |      |            |            |           |            |          |       |      |      |      |
|        | R(Calc.)       | 0.1100   |      |            |            |           |            |          |       |      |      |      |
|        | D/EN15084-22)  | 0.04440  |      |            | applicatio | n rango   | .1.00      | 1 00     |       |      |      |      |
|        | N(LN15504.22)  | 0.1245   |      |            | applicatio | mange     | . 1.00 – . | 4.00     |       |      |      |      |
| 0.45   |                |          |      |            |            |           |            |          |       |      |      |      |
| 2.15   |                |          |      |            |            |           |            |          |       |      |      |      |
| 2.1 -  |                |          |      |            |            |           |            |          |       |      |      |      |
| 2.05 - |                |          |      |            |            |           |            |          |       |      |      | Δ    |
|        |                |          |      |            |            |           |            |          | •     | •    | Δ    |      |
| 2      |                |          |      | <u>Λ Δ</u> |            | Δ         | Δ          | Δ        | 4     | Δ    |      |      |
| 1.95 - | <u>م</u>       | <b>A</b> | Δ    | Δ –        |            |           |            |          |       |      |      |      |
|        | *              |          |      |            |            |           |            |          |       |      |      |      |
| 1.9 -  |                |          |      |            |            |           |            |          |       |      |      |      |
| 1.85   |                |          |      |            |            |           |            |          |       |      |      |      |
| 18     |                |          |      |            |            |           |            |          |       |      |      |      |
| 1528   | 1635 6404 1026 | 1040     | 444  | 1081       | 6369       | 1062      | 1964       | 1961     | 1069  | 1737 | 1140 | 6203 |
|        |                |          |      |            |            |           |            |          |       |      |      |      |
|        |                |          |      |            |            |           |            |          |       |      |      |      |



## Determination of Propane on sample #22015; results in %mol/mol

|                | lab  | method      |          | value | e   | mark | z(targ) | rem   | arks      |           |           |        |     |     |     |     |
|----------------|------|-------------|----------|-------|-----|------|---------|-------|-----------|-----------|-----------|--------|-----|-----|-----|-----|
|                | 444  | EN15984     |          | 4.993 | 3   | С    | -0.46   | first | reported  | 1: 4.984  |           |        |     |     |     |     |
|                | 446  |             |          |       |     |      |         |       | ·         |           |           |        |     |     |     |     |
| 1              | 026  | EN15984     |          | 5.005 | 5   | С    | -0.32   | first | reported  | l: 4.9855 | 83333     |        |     |     |     |     |
| 1              | 040  | EN15984     |          | 5.00  |     |      | -0.38   |       |           |           |           |        |     |     |     |     |
| 1              | 062  | EN15984     |          | 4.964 | 46  |      | -0.79   |       |           |           |           |        |     |     |     |     |
| 1              | 069  | UOP539      |          | 5.12  | 1   |      | 1.06    |       |           |           |           |        |     |     |     |     |
| 1              | 1081 |             |          | 4.973 | 3   |      | -0.69   |       |           |           |           |        |     |     |     |     |
| 1              | 140  | D7833       |          | 5.092 | 2   | С    | 0.71    | first | reported  | 1: 5.098  |           |        |     |     |     |     |
| 1              | 1528 | UOP539      |          | 5.035 | 5   |      | 0.04    |       |           |           |           |        |     |     |     |     |
| 1              | 1635 | UOP539      |          | 4.86  |     | ex   | -2.03   | test  | result ex | cluded,   | see par   | agraph | 4.1 |     |     |     |
| 1              | 1737 |             |          | 4.99  |     |      | -0.49   |       |           |           |           |        |     |     |     |     |
| 1              | 1741 | UOP539      |          | 5.24  |     |      | 2.47    |       |           |           |           |        |     |     |     |     |
| 1              | 961  | EN15984     |          | 5.058 | 3   |      | 0.31    |       |           |           |           |        |     |     |     |     |
| 1              | 964  | In house    |          | 5.29  | 19  |      | 3.08    |       |           |           |           |        |     |     |     |     |
| 6              | 6142 | EN15984     |          | 4.908 | 35  |      | -1.46   |       |           |           |           |        |     |     |     |     |
| 6              | 6203 | UOP539      |          | 5.12  |     |      | 1.05    |       |           |           |           |        |     |     |     |     |
| 6              | 6369 | ISO17025    |          | 4.738 | 38  |      | -3.47   |       |           |           |           |        |     |     |     |     |
| 6              | 6404 | EN15984     |          | 4.976 | 5   |      | -0.66   |       |           |           |           |        |     |     |     |     |
| g              | 8006 |             |          |       |     |      |         |       |           |           |           |        |     |     |     |     |
|                |      |             |          |       |     |      |         |       |           |           |           |        |     |     |     |     |
|                |      | normality   |          | susp  | ect |      |         |       |           |           |           |        |     |     |     |     |
|                |      | n           |          | 16    |     |      |         |       |           |           |           |        |     |     |     |     |
|                |      | outliers    |          | 0 (+1 | ex) |      |         |       |           |           |           |        |     |     |     |     |
|                |      | mean (n)    |          | 5.03  | 17  |      |         |       |           |           |           |        |     |     |     |     |
|                |      | st.dev. (n) |          | 0.128 | 363 |      |         |       |           |           |           |        |     |     |     |     |
|                |      | R(calc.)    |          | 0.360 | )2  |      |         |       |           |           |           |        |     |     |     |     |
|                |      | st.dev.(EN1 | 5984:22) | 0.084 | 143 |      |         |       |           |           |           | _      |     |     |     |     |
|                |      | R(EN15984   | :22)     | 0.236 | 54  |      |         | appl  | ication r | ange 2.0  | 00 - 6.00 | J      |     |     |     |     |
|                |      |             |          |       |     |      |         |       |           |           |           |        |     |     |     |     |
| <sup>5.4</sup> |      |             |          |       |     |      |         |       |           |           |           |        |     |     |     |     |
| 5.3 -          |      |             |          |       |     |      |         |       |           |           |           |        |     |     |     | ∆   |
| 5.2            |      |             |          |       |     |      |         |       |           |           |           |        |     |     | ۵   |     |
|                |      |             |          |       |     |      |         |       |           |           |           |        | Δ   | Δ   |     |     |
| 5.1 +          |      |             |          |       |     |      |         |       |           |           | Δ         | Δ      |     |     |     |     |
| 5 -            |      |             | 4        | Δ     | Δ   | Δ    | Δ       | Δ     | Δ         | <u> </u>  |           |        |     |     |     |     |
| 4.9 -          |      | ۵           | -        |       |     |      |         |       |           |           |           |        |     |     |     |     |
| 48             |      | *           |          |       |     |      |         |       |           |           |           |        |     |     |     |     |
| 0 T            | Δ    |             |          |       |     |      |         |       |           |           |           |        |     |     |     |     |
| 4.7 -          |      |             |          |       |     |      |         |       |           |           |           |        |     |     |     |     |
| 4.6            | 8    | 42 B5       | 8        | 5     | ß   | 37   | 4       | 6     | 8         | 8         | 5         | 4      | 8   | 68  | 14  | 25  |
|                | 63(  | 16:         | 106      | 106   | 64( | 173  | 42      | 102   | 102       | 152       | 196       | 114    | 62( | 106 | 174 | 196 |
| L              |      |             |          |       |     |      |         |       |           |           |           |        |     |     |     |     |



# Determination of Propene on sample #22015; results in %mol/mol

| la     | ıb | method            | value      | mark    | z(targ) | remai    | 'ks       |           |       |     |     |     |     |
|--------|----|-------------------|------------|---------|---------|----------|-----------|-----------|-------|-----|-----|-----|-----|
| 44     | 14 | EN15984           | 1.574      | С       | -0.80   | first re | ported:   | 1.639     |       |     |     |     |     |
| 44     | 16 |                   |            |         |         |          | •         |           |       |     |     |     |     |
| 102    | 26 | EN15984           | 1.6118     | С       | 0.30    | first re | ported:   | 1.603533  | 3333  |     |     |     |     |
| 104    | 10 | EN15984           | 1.58       |         | -0.63   |          | •         |           |       |     |     |     |     |
| 106    | 62 | EN15984           | 1.5781     |         | -0.68   |          |           |           |       |     |     |     |     |
| 106    | 69 | UOP539            | 1.613      |         | 0.34    |          |           |           |       |     |     |     |     |
| 108    | 31 |                   | 1.569      |         | -0.95   |          |           |           |       |     |     |     |     |
| 114    | 10 | D7833             | 1.608      | С       | 0.19    | first re | ported:   | 1.610     |       |     |     |     |     |
| 152    | 28 | UOP539            | 1.59       | С       | -0.34   | first re | ported:   | 1.337     |       |     |     |     |     |
| 163    | 35 | UOP539            | 2.30       | G(0.01) | 20.50   |          |           |           |       |     |     |     |     |
| 173    | 37 |                   | 1.58       |         | -0.63   |          |           |           |       |     |     |     |     |
| 174    | 1  | UOP539            | 1.68       |         | 2.31    |          |           |           |       |     |     |     |     |
| 196    | 61 | EN15984           | 1.606      |         | 0.13    |          |           |           |       |     |     |     |     |
| 196    | 64 | In house          | 1.6269     |         | 0.75    |          |           |           |       |     |     |     |     |
| 614    | 12 |                   |            |         |         |          |           |           |       |     |     |     |     |
| 620    | )3 | UOP539            | 1.65       |         | 1.43    |          |           |           |       |     |     |     |     |
| 636    | 69 | ISO17025          | 1.5816     |         | -0.58   |          |           |           |       |     |     |     |     |
| 640    | )4 | EN15984           | 1.573      |         | -0.83   |          |           |           |       |     |     |     |     |
| 900    | )8 |                   |            |         |         |          |           |           |       |     |     |     |     |
|        |    |                   | 1.01/      |         |         |          |           |           |       |     |     |     |     |
|        |    | normality         | not OK     |         |         |          |           |           |       |     |     |     |     |
|        |    | n                 | 15         |         |         |          |           |           |       |     |     |     |     |
|        |    | outliers          | 1 6014     |         |         |          |           |           |       |     |     |     |     |
|        |    | mean (n)          | 1.0014     |         |         |          |           |           |       |     |     |     |     |
|        |    | SLOEV. (II)       | 0.03172    |         |         |          |           |           |       |     |     |     |     |
|        |    | st day (EN15081.2 | 2) 0.03407 |         |         |          |           |           |       |     |     |     |     |
|        |    | R(FN15984.22)     | 0.00407    |         |         | annlic   | ation rar | nde: 0.50 | -6.00 |     |     |     |     |
|        |    |                   | 0.0001     |         |         | appilo   | adonnai   | .go. 0.00 | 0.00  |     |     |     |     |
| 18 -   |    |                   |            |         |         |          |           |           |       |     |     |     |     |
| 4.75   |    |                   |            |         |         |          |           |           |       |     |     |     |     |
| 1.75 - |    |                   |            |         |         |          |           |           |       |     |     |     |     |
| 1.7    |    |                   |            |         |         |          |           |           |       |     |     | Δ   |     |
| 1.65 - |    |                   |            |         |         |          |           |           |       |     | Δ   |     |     |
| 1.6    |    |                   |            |         |         | Δ        | Δ         | Δ         | Δ     | Δ   |     |     |     |
| 1 55 A |    | Δ Δ 4             | ▲ ▲        | Δ Δ     | 4       |          |           |           |       |     |     |     |     |
|        |    |                   |            |         |         |          |           |           |       |     |     |     |     |
| 1.5    |    |                   |            |         |         |          |           |           |       |     |     |     |     |
| 1.45 - |    |                   |            |         |         |          |           |           |       |     |     |     |     |
| 1.4    |    | 4 4 5             | 4 9        | 25 Q    | 8       |          | 9         | 98        | g     | X   | g   | =   |     |
| 106    |    | 6641<br>42<br>106 | <u> </u>   | 17:     | 152     | 196      | 114       | 102       | 106   | 196 | 62( | 174 | 160 |
|        |    |                   |            |         |         |          |           |           |       |     |     |     |     |
| r      |    |                   |            |         |         |          |           |           |       |     |     |     |     |



## Determination of iso-Butane on sample #22015; results in %mol/mol

| lab    | method        | value   | mark    | z(targ) | rema     | rks       |           |        |     |    |     |     |
|--------|---------------|---------|---------|---------|----------|-----------|-----------|--------|-----|----|-----|-----|
| 444    | EN15984       | 1.768   | С       | 0.41    | first re | eported:  | 1.764     |        |     |    |     |     |
| 446    |               |         |         |         |          |           |           |        |     |    |     |     |
| 1026   | EN15984       | 1.7703  | С       | 0.46    | first re | eported:  | 1.7641    |        |     |    |     |     |
| 1040   | EN15984       | 1.75    |         | -0.04   |          |           |           |        |     |    |     |     |
| 1062   | EN15984       | 1.7175  |         | -0.86   |          |           |           |        |     |    |     |     |
| 1069   | UOP539        | 1.8066  |         | 1.37    |          |           |           |        |     |    |     |     |
| 1081   | D7000         | 1./1/   | 0       | -0.87   | <b>C</b> |           | 4 700     |        |     |    |     |     |
| 1140   | D7833         | 1.794   | C       | 1.06    | TIPST P  | eported:  | 1.796     |        |     |    |     |     |
| 1528   | UOP539        | 1.70    |         | -1.30   | TIPST P  | eportea:  | 1.498     |        |     |    |     |     |
| 1033   | 00F339        | 1.30    | G(0.01) | -9.0Z   |          |           |           |        |     |    |     |     |
| 1737   |               | 1.70    |         | 1.06    |          |           |           |        |     |    |     |     |
| 1061   | EN15084       | 1.05    |         | 0.03    |          |           |           |        |     |    |     |     |
| 1964   | LINIUUU       |         |         | 0.00    |          |           |           |        |     |    |     |     |
| 6142   | EN15984       | 1 7255  |         | -0 66   |          |           |           |        |     |    |     |     |
| 6203   | UOP539        | 1.65    |         | -2.55   |          |           |           |        |     |    |     |     |
| 6369   | ISO17025      | 1.7134  |         | -0.96   |          |           |           |        |     |    |     |     |
| 6404   | EN15984       | 1.765   |         | 0.33    |          |           |           |        |     |    |     |     |
| 9008   |               |         |         |         |          |           |           |        |     |    |     |     |
|        |               |         |         |         |          |           |           |        |     |    |     |     |
|        | normality     | OK      |         |         |          |           |           |        |     |    |     |     |
|        | n             | 15      |         |         |          |           |           |        |     |    |     |     |
|        | outliers      | 1       |         |         |          |           |           |        |     |    |     |     |
|        | mean (n)      | 1.7518  |         |         |          |           |           |        |     |    |     |     |
|        | st.dev. (n)   | 0.04740 |         |         |          |           |           |        |     |    |     |     |
|        | R(Calc.)      | 0.1327  |         |         |          |           |           |        |     |    |     |     |
|        | R/EN15984-22) | 0.03991 |         |         | annlir   | ation rar | nde: 1.00 | - 2 50 |     |    |     |     |
|        | N(LN15504.22) | 0.1110  |         |         | applic   | allon la  | ige. 1.00 | - 2.50 |     |    |     |     |
| 10     |               |         |         |         |          |           |           |        |     |    |     |     |
| 1.9 -  |               |         |         |         |          |           |           |        |     |    |     |     |
| 1.85 - |               |         |         |         |          |           |           |        |     |    |     | Δ   |
| 1.8 -  |               |         |         |         |          |           |           |        | ▲   | ۵  | ۵   |     |
| 1.75   |               |         |         | Δ       | ۵        | ۵         | ۵         | Δ      |     |    |     |     |
| 17     |               | ۵       | ۵ ۵     |         |          |           |           |        |     |    |     |     |
| 1.7 -  | Δ             |         |         |         |          |           |           |        |     |    |     |     |
| 1.65 - | ۵             |         |         |         |          |           |           |        |     |    |     |     |
| 1.6 -  |               |         |         |         |          |           |           |        |     |    |     |     |
| 1.55   | 69 KS Q3      | 18      | 42 62   | 64      | 04       | 44        | 56        | 37     | 61  | 40 | 69  | 41  |
| 162    | 152 624       | 106     | 100     | 2       | 640      | 4         | 102       | 21     | 196 | 14 | 106 | 174 |



# Determination of n-Butane on sample #22015; results in %mol/mol

| lab    | method        | value   | mark     | z(targ) | remar    | ks        |          |        |      |      |      |      |
|--------|---------------|---------|----------|---------|----------|-----------|----------|--------|------|------|------|------|
| 444    | EN15984       | 1.369   | С        | 0.19    | first re | ported:   | 1.366    |        |      |      |      |      |
| 446    |               |         |          |         |          |           |          |        |      |      |      |      |
| 1026   | EN15984       | 1.3775  | С        | 0.39    | first re | ported:   | 1.374    |        |      |      |      |      |
| 1040   | EN15984       | 1.34    |          | -0.49   |          |           |          |        |      |      |      |      |
| 1062   | EN15984       | 1.3166  |          | -1.05   |          |           |          |        |      |      |      |      |
| 1069   | UOP539        | 1.3995  |          | 0.91    |          |           |          |        |      |      |      |      |
| 1081   |               | 1.312   |          | -1.15   |          |           |          |        |      |      |      |      |
| 1140   | D7833         | 1.376   | С        | 0.36    | first re | ported:   | 1.378    |        |      |      |      |      |
| 1528   | UOP539        | 1.38    | С        | 0.45    | first re | ported:   | 1.216    |        |      |      |      |      |
| 1635   | UOP539        | 0.14    | G(0.01)  | -28.86  |          |           |          |        |      |      |      |      |
| 1737   |               | 1.37    |          | 0.22    |          |           |          |        |      |      |      |      |
| 1741   | UOP539        | 1.42    |          | 1.40    |          |           |          |        |      |      |      |      |
| 1961   | EN15984       | 1.391   |          | 0.71    |          |           |          |        |      |      |      |      |
| 1964   |               |         |          |         |          |           |          |        |      |      |      |      |
| 6142   | EN15984       | 1.3445  |          | -0.39   |          |           |          |        |      |      |      |      |
| 6203   | UOP539        | 1.37    |          | 0.22    |          |           |          |        |      |      |      |      |
| 6369   | ISO17025      | 1.2673  |          | -2.21   |          |           |          |        |      |      |      |      |
| 6404   | EN15984       | 1.379   |          | 0.43    |          |           |          |        |      |      |      |      |
| 9008   |               |         |          |         |          |           |          |        |      |      |      |      |
|        |               |         |          |         |          |           |          |        |      |      |      |      |
|        | normality     | suspect |          |         |          |           |          |        |      |      |      |      |
|        | n             | 15      |          |         |          |           |          |        |      |      |      |      |
|        | outliers      | 1       |          |         |          |           |          |        |      |      |      |      |
|        | mean (n)      | 1.3608  |          |         |          |           |          |        |      |      |      |      |
|        | st.dev. (n)   | 0.03886 |          |         |          |           |          |        |      |      |      |      |
|        | R(calc.)      | 0.1088  |          |         |          |           |          |        |      |      |      |      |
|        | D/EN15084-22) | 0.04231 |          |         | applier  | ation rar | ngo 1 00 | 4 00   |      |      |      |      |
|        | N(LN15504.22) | 0.1105  |          |         | applica  | allon fai | ige 1.00 | - 4.00 |      |      |      |      |
|        |               |         |          |         |          |           |          |        |      |      |      |      |
| 1.55   |               |         |          |         |          |           |          |        |      |      |      |      |
| 1.5 -  |               |         |          |         |          |           |          |        |      |      |      |      |
| 1.45 - |               |         |          |         |          |           |          |        |      |      |      |      |
|        |               |         |          |         |          |           |          |        |      |      |      | Δ    |
| 1.4 -  |               |         |          |         |          |           |          | •      | •    | Δ    | Δ    |      |
| 1.35 - |               |         | <u> </u> | Δ       | Δ        | Δ         | 4        | -      | -    |      |      |      |
|        | ۵             | Δ       | -        |         |          |           |          |        |      |      |      |      |
| 1.3 -  | -             |         |          |         |          |           |          |        |      |      |      |      |
| 1.25 - | Δ             |         |          |         |          |           |          |        |      |      |      |      |
| 1.2    |               |         |          |         |          |           |          |        |      |      |      |      |
| 1635   | 6369          | 1062    | 6142     | 1737    | 6203     | 1140      | 1026     | 6404   | 1528 | 1961 | 1069 | 1741 |
|        |               |         |          |         |          |           |          |        |      |      |      |      |



## Determination of trans-2-Butene on sample #22015; results in %mol/mol

| lah  | mothed           | value   | mork    | =/torg) | Pamarka                 |
|------|------------------|---------|---------|---------|-------------------------|
|      | ENI45004         |         |         | Z(targ) |                         |
| 444  | EN15984          | 0.137   | C       | -1.14   | first reported: 0.178   |
| 446  |                  |         | •       |         |                         |
| 1026 | EN15984          | 0.1483  | C       | 0.31    | first reported: 0.14795 |
| 1040 | EN15984          | 0.14    |         | -0.75   |                         |
| 1062 | EN15984          | 0.1422  |         | -0.47   |                         |
| 1069 | UOP539           | 0.1515  |         | 0.72    |                         |
| 1081 |                  | 0.143   |         | -0.37   |                         |
| 1140 | D7833            | 0.144   |         | -0.24   |                         |
| 1528 | UOP539           | 0.15    | С       | 0.53    | first reported: 0.114   |
| 1635 | UOP539           | 0.10    | G(0.01) | -5.88   |                         |
| 1737 |                  | 0.15    |         | 0.53    |                         |
| 1741 | UOP539           | 0.16    |         | 1.81    |                         |
| 1961 | EN15984          | 0.150   |         | 0.53    |                         |
| 1964 |                  |         |         |         |                         |
| 6142 | EN15984          | 0.143   |         | -0.37   |                         |
| 6203 | UOP539           | 0.13    |         | -2.04   |                         |
| 6369 | ISO17025         | 0.1500  |         | 0.53    |                         |
| 6404 | EN15984          | 0.149   |         | 0.40    |                         |
| 9008 |                  |         |         |         |                         |
|      |                  |         |         |         |                         |
|      | normality        | suspect |         |         |                         |
|      | n                | 15      |         |         |                         |
|      | outliers         | 1       |         |         |                         |
|      | mean (n)         | 0.1459  |         |         |                         |
|      | st.dev. (n)      | 0.00714 |         |         |                         |
|      | R(calc.)         | 0.0200  |         |         |                         |
|      | st.dev.(Horwitz) | 0.00780 |         |         |                         |
|      | R(Horwitz)       | 0.0218  |         |         |                         |
|      | . ,              |         |         |         |                         |





# Determination of 1-Butene on sample #22015; results in %mol/mol

| lab     | method              | value     | mark    | z(targ) | remar    | ks        |           |       |      |      |      |      |
|---------|---------------------|-----------|---------|---------|----------|-----------|-----------|-------|------|------|------|------|
| 444     | EN15984             | 0.135     | С       | -2.06   | first re | ported: ( | ).167     |       |      |      |      |      |
| 446     |                     |           |         |         |          |           |           |       |      |      |      |      |
| 1026    | EN15984             | 0.1482    | С       | 0.39    | first re | ported: ( | ).148333  | 333   |      |      |      |      |
| 1040    | EN15984             | 0.14      |         | -1.13   |          |           |           |       |      |      |      |      |
| 1062    | EN15984             | 0.1442    |         | -0.35   |          |           |           |       |      |      |      |      |
| 1069    | UOP539              | 0.1513    |         | 0.96    |          |           |           |       |      |      |      |      |
| 1081    |                     | 0.141     |         | -0.95   |          |           |           |       |      |      |      |      |
| 1140    | D7833               | 0.148     |         | 0.35    |          |           |           |       |      |      |      |      |
| 1528    | UOP539              | 0.15      | С       | 0.72    | first re | ported: 0 | ).119     |       |      |      |      |      |
| 1635    | UOP539              | 0         | G(0.01) | -27.05  |          |           |           |       |      |      |      |      |
| 1737    |                     | 0.15      |         | 0.72    |          |           |           |       |      |      |      |      |
| 1741    | UOP539              | 0.16      |         | 2.57    |          |           |           |       |      |      |      |      |
| 1961    | EN15984             | 0.151     |         | 0.90    |          |           |           |       |      |      |      |      |
| 1964    |                     |           |         |         |          |           |           |       |      |      |      |      |
| 6142    | EN15984             | 0.144     |         | -0.39   |          |           |           |       |      |      |      |      |
| 6203    | UOP539              | 0.13      |         | -2.98   |          |           |           |       |      |      |      |      |
| 6369    | ISO17025            | 0.1500    |         | 0.72    |          |           |           |       |      |      |      |      |
| 6404    | EN15984             | 0.149     |         | 0.53    |          |           |           |       |      |      |      |      |
| 9008    |                     |           |         |         |          |           |           |       |      |      |      |      |
|         |                     |           |         |         |          |           |           |       |      |      |      |      |
|         | normality           | OK        |         |         |          |           |           |       |      |      |      |      |
|         | n                   | 15        |         |         |          |           |           |       |      |      |      |      |
|         | outliers            | 1         |         |         |          |           |           |       |      |      |      |      |
|         | mean (n)            | 0.1461    |         |         |          |           |           |       |      |      |      |      |
|         | st.dev. (n)         | 0.00737   |         |         |          |           |           |       |      |      |      |      |
|         | R(calc.)            | 0.0206    |         |         |          |           |           |       |      |      |      |      |
|         | st.dev.(EN15984:22  | ) 0.00540 |         |         |          |           |           |       |      |      |      |      |
|         | R(EN15984:22)       | 0.0151    |         |         | applica  | ation ran | ge: 0.50- | -2.00 |      |      |      |      |
|         |                     |           |         |         |          |           |           |       |      |      |      |      |
| 0.165 T |                     |           |         |         |          |           |           |       |      |      |      |      |
| 0.16 -  |                     |           |         |         |          |           |           |       |      |      |      | Δ    |
| 0.155   |                     |           |         |         |          |           |           |       |      |      |      |      |
| 0.15    |                     |           |         |         |          | •         | ۵         | Δ     | ۵    | ۵    | Δ    |      |
| 0.145   |                     |           | A A     | Δ       | Δ        | _         |           |       |      |      |      |      |
| 0.14    | ۵                   | ۵         | -       |         |          |           |           |       |      |      |      |      |
| 0.135   | Δ                   |           |         |         |          |           |           |       |      |      |      |      |
| 0.13    | δ                   |           |         |         |          |           |           |       |      |      |      |      |
| 0.125 - |                     |           |         |         |          |           |           |       |      |      |      |      |
| 0.12    |                     |           |         |         |          |           |           |       |      |      |      |      |
| 1635    | 6203<br>444<br>1040 | 1081      | 6142    | 1140    | 1026     | 6404      | 1528      | 1737  | 6369 | 1961 | 1069 | 1741 |
|         |                     |           |         |         |          |           |           |       |      |      |      |      |



## Determination of iso-Butene on sample #22015; results in %mol/mol

|                   |                  |         | -       |         |                       |
|-------------------|------------------|---------|---------|---------|-----------------------|
| lab               | method           | value   | mark    | z(targ) | remarks               |
| 444               | EN15984          | 0.088   | С       | -1.87   | first reported: 0.109 |
| 446               |                  |         |         |         |                       |
| 1026              | EN15984          | 0.0956  | С       | -0.51   | first reported: 0.097 |
| 1040              | EN15984          | 0.10    |         | 0.28    |                       |
| 1062              | EN15984          | 0.0955  |         | -0.53   |                       |
| 1069              | UOP539           | 0.1014  |         | 0.53    |                       |
| 1081              |                  |         |         |         |                       |
| 1140              | D7833            | 0.098   | С       | -0.08   | first reported: 0.099 |
| 1528              | UOP539           | 0.10    | С       | 0.28    | first reported: 0.082 |
| 1635              | UOP539           | 0       | G(0.01) | -17.64  |                       |
| 1737              |                  | 0.10    |         | 0.28    |                       |
| 1741              | UOP539           | 0.11    |         | 2.07    |                       |
| 1961              | EN15984          | 0.101   |         | 0.46    |                       |
| 1964              |                  |         |         |         |                       |
| 6142              |                  |         |         |         |                       |
| 6203              | UOP539           | 0.09    |         | -1.51   |                       |
| 6369              | ISO17025         | 0.1014  |         | 0.53    |                       |
| 6404              | EN15984          | 0.099   |         | 0.10    |                       |
| 9008              |                  |         |         |         |                       |
|                   |                  |         |         |         |                       |
|                   | normality        | suspect |         |         |                       |
|                   | n                | 13      |         |         |                       |
|                   | outliers         | 1       |         |         |                       |
|                   | mean (n)         | 0.0985  |         |         |                       |
|                   | st.dev. (n)      | 0.00550 |         |         |                       |
|                   | R(calc.)         | 0.0154  |         |         |                       |
|                   | st.dev.(Horwitz) | 0.00558 |         |         |                       |
|                   | R(Horwitz)       | 0.0156  |         |         |                       |
|                   |                  |         |         |         |                       |
| <sup>0.12</sup> T |                  |         |         |         |                       |





# Determination of cis-2-Butene on sample #22015; results in %mol/mol

|      | •                | -       |         |         | -                       |
|------|------------------|---------|---------|---------|-------------------------|
| lab  | method           | value   | mark    | z(targ) | remarks                 |
| 444  | EN15984          | 0.09    | С       | -1.33   | first reported: 0.119   |
| 446  |                  |         |         |         |                         |
| 1026 | EN15984          | 0.0967  | С       | -0.12   | first reported: 0.09795 |
| 1040 | EN15984          | 0.09    |         | -1.33   |                         |
| 1062 | EN15984          | 0.0936  |         | -0.68   |                         |
| 1069 | UOP539           | 0.1006  |         | 0.58    |                         |
| 1081 |                  | 0.097   |         | -0.07   |                         |
| 1140 | D7833            | 0.095   | С       | -0.43   | first reported: 0.096   |
| 1528 | UOP539           | 0.10    | С       | 0.47    | first reported: 0.076   |
| 1635 | UOP539           | 0.22    | G(0.01) | 22.17   |                         |
| 1737 |                  | 0.10    | . ,     | 0.47    |                         |
| 1741 | UOP539           | 0.11    |         | 2.28    |                         |
| 1961 | EN15984          | 0.100   |         | 0.47    |                         |
| 1964 |                  |         |         |         |                         |
| 6142 |                  |         |         |         |                         |
| 6203 | UOP539           | 0.09    |         | -1.33   |                         |
| 6369 | ISO17025         | 0.1014  |         | 0.73    |                         |
| 6404 | EN15984          | 0.099   |         | 0.29    |                         |
| 9008 |                  |         |         |         |                         |
|      |                  |         |         |         |                         |
|      | normality        | OK      |         |         |                         |
|      | n                | 14      |         |         |                         |
|      | outliers         | 1       |         |         |                         |
|      | mean (n)         | 0.0974  |         |         |                         |
|      | st.dev. (n)      | 0.00550 |         |         |                         |
|      | R(calc.)         | 0.0154  |         |         |                         |
|      | st.dev.(Horwitz) | 0.00553 |         |         |                         |
|      | R(Horwitz)       | 0.0155  |         |         |                         |
|      | . ,              |         |         |         |                         |





## Determination of iso-Pentane on sample #22015; results in %mol/mol

| lah    | method              | valuo          | mark    | z(tara) | romarks                                 |
|--------|---------------------|----------------|---------|---------|-----------------------------------------|
| 444    | EN15084             | 0 172          | main    | _1 04   | Tomuno                                  |
| 444    |                     |                |         | -1.04   |                                         |
| 1026   | EN15984             | 0 1826         | C       | 2 15    | first reported: 0 18385                 |
| 1040   | EN15984             | 0.17           | U       | -1.64   |                                         |
| 1062   | EN15984             | 0.1686         |         | -2.07   |                                         |
| 1069   | UOP539              | 0.2335         | G(0.01) | 17.48   |                                         |
| 1081   |                     | 0.166          | ( )     | -2.85   |                                         |
| 1140   | D7833               | 0.178          |         | 0.77    |                                         |
| 1528   | UOP539              | 0.18           | С       | 1.37    | first reported: 0.140                   |
| 1635   | UOP539              | 0.16           | ex      | -4.66   | test result excluded, see paragraph 4.1 |
| 1737   |                     |                |         |         |                                         |
| 1741   | UOP539              | 0.21           | G(0.01) | 10.40   |                                         |
| 1961   | EN15984             | 0.179          |         | 1.07    |                                         |
| 1964   | In house            | 0.1799         |         | 1.34    |                                         |
| 6142   | EN15984             | 0.179          |         | 1.07    |                                         |
| 6203   | UOP539              | 0.14           | G(0.01) | -10.68  |                                         |
| 6369   | ISO17025            | 0.1724         |         | -0.92   |                                         |
| 6404   | EN15984             | 0.178          |         | 0.77    |                                         |
| 9008   |                     |                |         |         |                                         |
|        | normality           | OK             |         |         |                                         |
|        | normality           | 12             |         |         |                                         |
|        | n<br>outliers       | 12<br>3 (+1ev) |         |         |                                         |
|        | mean (n)            | 0 1755         |         |         |                                         |
|        | st dev (n)          | 0.00537        |         |         |                                         |
|        | R(calc.)            | 0.00007        |         |         |                                         |
|        | st dev (FN15984·22) | 0.00332        |         |         |                                         |
|        | R(EN15984:22)       | 0.0093         |         |         | application range: 0.20-2.10            |
|        | ( ····,             |                |         |         |                                         |
| 0.24 - |                     |                |         |         |                                         |
| 0.24   |                     |                |         |         | x                                       |
| 0.20   |                     |                |         |         |                                         |





# Determination of n-Pentane on sample #22015; results in %mol/mol

|                   | lab          | method         |       | value |     | mark     | z(1 | targ)         | remark     | s        |          |        |     |     |     |     |
|-------------------|--------------|----------------|-------|-------|-----|----------|-----|---------------|------------|----------|----------|--------|-----|-----|-----|-----|
|                   | 444          | EN15984        |       | 0.152 |     | С        | -   | 0.42          | first rep  | orted: 0 | .151     |        |     |     |     |     |
|                   | 446          |                |       |       |     |          |     |               |            |          |          |        |     |     |     |     |
|                   | 1026         | EN15984        |       | 0.162 |     | С        |     | 0.61          | first rep  | orted: 0 | .163566  | 667    |     |     |     |     |
|                   | 1040         | EN15984        |       | 0.14  |     |          | -   | 1.65          |            |          |          |        |     |     |     |     |
|                   | 1062         | EN15984        |       | 0.147 | 5   |          | -   | 0.88          |            |          |          |        |     |     |     |     |
|                   | 1069         | UOP539         |       | 0.214 | 0   | DG(0.05) |     | 5.97          |            |          |          |        |     |     |     |     |
|                   | 1081         | 5-000          |       | 0.148 |     |          | -   | 0.83          |            |          |          |        |     |     |     |     |
|                   | 1140         | D7833          |       | 0.151 |     | 0        | -   | 0.52          | <b>c</b> . |          | 100      |        |     |     |     |     |
|                   | 1528         | UOP539         |       | 0.16  |     | C        |     | 0.41          | first rep  | orted: 0 | .130     |        |     |     |     |     |
|                   | 1635         | 00P539         |       | 0     |     | G(0.01)  | -1  | 6.08          |            |          |          |        |     |     |     |     |
|                   | 1/3/         |                |       | 0.16  |     |          |     | 0.41          |            |          |          |        |     |     |     |     |
|                   | 1/41         | UUP539         |       | 0.20  |     | DG(0.05) |     | 4.53          |            |          |          |        |     |     |     |     |
|                   | 1901         | EN 10904       |       | 0.101 | 0   |          |     | 0.51          |            |          |          |        |     |     |     |     |
|                   | 1904<br>6140 | EN15094        |       | 0.1/5 | 9   |          |     | ∠.05<br>∩ / 1 |            |          |          |        |     |     |     |     |
|                   | 6203         | LIOD520        |       | 0.100 |     | C(0.05)  |     | 2 71          |            |          |          |        |     |     |     |     |
|                   | 6360         | 19017025       |       | 0.12  | 1   | G(0.03)  |     | 0.41          |            |          |          |        |     |     |     |     |
|                   | 6404         | EN15084        |       | 0.152 | 1   |          | -   | 0.41          |            |          |          |        |     |     |     |     |
|                   | 9008         | LIN10004       |       |       |     |          |     |               |            |          |          |        |     |     |     |     |
|                   | 0000         |                |       |       |     |          |     |               |            |          |          |        |     |     |     |     |
|                   |              | normality      |       | suspe | ect |          |     |               |            |          |          |        |     |     |     |     |
|                   |              | n              |       | 13 ່  |     |          |     |               |            |          |          |        |     |     |     |     |
|                   |              | outliers       |       | 4     |     |          |     |               |            |          |          |        |     |     |     |     |
|                   |              | mean (n)       |       | 0.156 | 0   |          |     |               |            |          |          |        |     |     |     |     |
|                   |              | st.dev. (n)    |       | 0.008 | 96  |          |     |               |            |          |          |        |     |     |     |     |
|                   |              | R(calc.)       |       | 0.025 | 1   |          |     |               |            |          |          |        |     |     |     |     |
|                   |              | st.dev.(EN1598 | 4:22) | 0.009 | 70  |          |     |               |            |          |          |        |     |     |     |     |
|                   |              | R(EN15984:22)  |       | 0.027 | 2   |          |     |               | applicat   | ion rang | ge: 0.10 | – 0.35 |     |     |     |     |
|                   |              |                |       |       |     |          |     |               |            |          |          |        |     |     |     |     |
| <sup>0.22</sup> T |              |                |       |       |     |          |     |               |            |          |          |        |     |     |     | *   |
|                   |              |                |       |       |     |          |     |               |            |          |          |        |     |     |     | *   |
| 0.2 -             |              |                |       |       |     |          |     |               |            |          |          |        |     |     | ж   |     |
| 0.18 -            |              |                |       |       |     |          |     |               |            |          |          |        |     |     |     |     |
|                   |              |                |       |       |     |          |     |               |            |          |          |        |     | Δ   |     |     |
| 0.16 -            |              |                |       |       |     |          |     | ۵             | ۵          | ۵        | ۵        | Δ      | ۵   |     |     |     |
| 0.14              |              |                | ۵     | Δ     | ۵   | Δ        | Δ   |               |            |          |          |        |     |     |     |     |
| 0.14              |              | Δ              |       |       |     |          |     |               |            |          |          |        |     |     |     |     |
| 0.12              |              | *              |       |       |     |          |     |               |            |          |          |        |     |     |     |     |
|                   |              |                |       |       |     |          |     |               |            |          |          |        |     |     |     |     |
| 0.1 -             | 635          | 040 203        | 062   | 081   | 140 | 444      | 369 | 404           | 528        | 737      | 142      | 961    | 026 | 964 | 741 | 690 |
|                   | -            | - v            | -     | -     | -   |          | 9   | ø             | -          | -        | 9        | -      | -   | -   | -   | -   |



# Determination of Carbon content on sample #22015; results in g/100g

| lab  | method                | value  | mark    | z(targ) | remarks                |
|------|-----------------------|--------|---------|---------|------------------------|
| 444  | EN15984               | 67.74  | С       | 0.16    | first reported: 67.86  |
| 446  |                       |        | -       |         |                        |
| 1026 | EN15984               | 67.03  |         | -0.76   |                        |
| 1040 | EN15984               | 67.6   |         | -0.02   |                        |
| 1062 | EN15984               | 67.71  |         | 0.13    |                        |
| 1069 | EN15984               | 68.11  |         | 0.64    |                        |
| 1081 |                       |        |         |         |                        |
| 1140 |                       |        |         |         |                        |
| 1528 | UOP539                | 67.79  | С       | 0.23    | first reported: 67.732 |
| 1635 |                       |        |         |         |                        |
| 1737 | EN15984               | 67.73  |         | 0.15    |                        |
| 1741 |                       |        |         |         |                        |
| 1961 | EN15984               | 67.33  |         | -0.37   |                        |
| 1964 | In house              | 68.024 |         | 0.53    |                        |
| 6142 | EN15984               | 66.025 | G(0.05) | -2.06   |                        |
| 6203 | EN15984               | 67.07  |         | -0.70   |                        |
| 6369 |                       |        |         |         |                        |
| 6404 | EN15984               | 67.61  |         | 0.00    |                        |
| 9008 |                       |        |         |         |                        |
|      |                       |        |         |         |                        |
|      | hormality             | UK 11  |         |         |                        |
|      | n<br>autliana         | 11     |         |         |                        |
|      |                       |        |         |         |                        |
|      | mean (n)              | 07.013 |         |         |                        |
|      | St.dev. (n)           | 0.3466 |         |         |                        |
|      | r(UdlC.)              | 0.971  |         |         |                        |
|      | SI.UEV.(EIN 15984.22) | 0.7714 |         |         |                        |
|      | R(EN13904.22)         | 2.10   |         |         |                        |





# Determination of Lower Calorific Value on sample #22015; results in kJ/100g

| lab  | method              | value    | mark | z(targ) | remarks                 |
|------|---------------------|----------|------|---------|-------------------------|
| 444  | EN15984             | 4956.84  | С    | 0.66    | first reported: 4953.85 |
| 446  |                     |          |      |         |                         |
| 1026 |                     |          |      |         |                         |
| 1040 | EN15984             | 4948.0   | С    | 0.45    | first reported: 494.8   |
| 1062 | EN15984             | 4956.69  |      | 0.65    |                         |
| 1069 | EN15984             | 4946     | С    | 0.40    | first reported: 494600  |
| 1081 |                     |          |      |         |                         |
| 1140 |                     |          |      |         |                         |
| 1528 | ISO6976             | 4954.9   | С    | 0.61    | first reported: 49.73   |
| 1635 |                     |          |      |         |                         |
| 1737 | EN15984             | 4954.60  |      | 0.60    |                         |
| 1741 |                     |          |      |         |                         |
| 1961 | EN15984             | 4911.80  |      | -0.39   |                         |
| 1964 | In house            | 4930.507 |      | 0.04    |                         |
| 6142 | EN15984             | 4835.58  |      | -2.17   |                         |
| 6203 | ISO6976             | 4863.31  |      | -1.53   |                         |
| 6369 |                     |          |      |         |                         |
| 6404 | EN15984             | 4957.54  |      | 0.67    |                         |
| 9008 |                     |          |      |         |                         |
|      |                     |          |      |         |                         |
|      | normality           | suspect  |      |         |                         |
|      | n                   | 11       |      |         |                         |
|      | outliers            | 0        |      |         |                         |
|      | mean (n)            | 4928.706 |      |         |                         |
|      | st.dev. (n)         | 42.0382  |      |         |                         |
|      | R(calc.)            | 117.707  |      |         |                         |
|      | st.dev.(EN15984:22) | 42.8214  |      |         |                         |
|      | R(EN15984:22)       | 119.90   |      |         |                         |





#### Other reported test results

| lab  | Hydrogen sulfide | Ethyne | Propyne | Propadiene | 1,3-Butadiene | Other *) |
|------|------------------|--------|---------|------------|---------------|----------|
| 444  | 0                | 0      | 0       | 0          | 0             | 0        |
| 446  |                  |        |         |            |               |          |
| 1026 | 0                |        |         |            |               | 0        |
| 1040 | 0.00             | 0.00   | 0.00    | 0.00       | 0.00          | 0.00     |
| 1062 | 0.000            | 0.000  | 0.000   | 0.000      | 0.000         | 0.0000   |
| 1069 |                  | 0.00   | 0.00    | 0.00       | 0.00          | 0.00     |
| 1081 |                  | 0 C    | 0 C     |            |               |          |
| 1140 |                  | 0.000  |         | 0.000      | 0.000         | 0.000    |
| 1528 |                  |        |         |            |               |          |
| 1635 | 0                | 0      |         |            | 0             |          |
| 1737 |                  | <0,01  | <0,01   | <0,01      | <0,01         |          |
| 1741 |                  |        |         |            |               |          |
| 1961 | 0.000            | 0.000  |         | 0.000      | 0.000         | 0.000    |
| 1964 |                  |        |         |            |               |          |
| 6142 |                  |        |         |            |               |          |
| 6203 | 0                | 0      | 0       | 0          | 0             | 0        |
| 6369 |                  |        |         |            |               |          |
| 6404 | 0.000            | 0.000  | 0.000   | 0.000      | 0.000         | 0.000    |
| 9008 |                  |        |         |            |               |          |

\*) Other components with 5 or more carbon atoms, excluding iso-Butane and Pentanes (C5+)

Lab 1081 first reported for Ethyne: 1.975, for Propyne: 1.569

#### Number of participants per country

1 lab in AUSTRIA 2 labs in BELGIUM 1 lab in CROATIA 1 lab in FINLAND 1 lab in FRANCE 1 lab in GERMANY 1 lab in IRELAND 1 lab in KUWAIT 2 labs in NETHERLANDS 2 labs in ROMANIA 1 lab in SERBIA 1 lab in SWEDEN

4 labs in UNITED KINGDOM

#### Abbreviations

| С        | = final test result after checking of first reported suspect test result           |
|----------|------------------------------------------------------------------------------------|
| D(0.01)  | = outlier in Dixon's outlier test                                                  |
| D(0.05)  | = straggler in Dixon's outlier test                                                |
| G(0.01)  | = outlier in Grubbs' outlier test                                                  |
| G(0.05)  | = straggler in Grubbs' outlier test                                                |
| DG(0.01) | = outlier in Double Grubbs' outlier test                                           |
| DG(0.05) | = straggler in Double Grubbs' outlier test                                         |
| R(0.01)  | = outlier in Rosner's outlier test                                                 |
| R(0.05)  | = straggler in Rosner's outlier test                                               |
| E        | = calculation difference between reported test result and result calculated by iis |
| W        | = test result withdrawn on request of participant                                  |
| ex       | = test result excluded from the statistical evaluation                             |
| n.a.     | = not applicable                                                                   |
| n.e.     | = not evaluated                                                                    |
| n.d.     | = not detected                                                                     |
| fr.      | = first reported                                                                   |
| SDS      | = Material Safety Data Sheet                                                       |

## Literature

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018
- 2 ISO5725:86
- 3 ISO5725 parts 1-6:94
- 4 ISO13528:05
- 5 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 6 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 7 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 8 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 9 Analytical Methods Committee, Technical Brief, No 4, January 2001
- 10 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry, Analyst, <u>127</u>, 1359-1364, (2002)
- 11 W. Horwitz and R. Albert, J. AOAC Int, <u>79.3</u>, 589-621, (1996)
- 12 Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, <u>25(2)</u>, 165-172, (1983)